• Title/Summary/Keyword: Guanosine-5'-monophosphate

Search Result 74, Processing Time 0.02 seconds

Antinociceptive Effect of the Intrathecal Phosphodiesterase Inhibitor, Zaprinast, in a Rat Formalin Test

  • Heo, Burn Young;Kim, Chang Mo;Jeong, Sung Tae;Kim, Seok Jai;Choi, Jeong II;Yoon, Myung Ha
    • The Korean Journal of Pain
    • /
    • v.18 no.2
    • /
    • pp.99-106
    • /
    • 2005
  • Background: Cyclic guanosine monophosphate (cGMP) and opioid receptors are involved in the modulation of nociception. Although the opioid receptors agonists are active in pain, the effect of an phospodiesterase inhibitor (zaprinast) for increasing the level of cGMP has not been thoroughly investigated at the spinal level. This study examined the effects of intrathecal zaprinast and morphine in a nociceptive test and we also examined the nature of the pharmacological interaction after the coadministration of zaprinast with morphine. The role of the nitric oxide (NO)-cGMP-potassium channel pathway on the effect of zaprinast was further clarified. Methods: Catheters were inserted into the intrathecal space of male SD rats. For the induction of pain, $50{\mu}l$ of 5% formalin solution was applied to the hindpaw. Isobolographic analysis was used for the evaluation of the drug interaction between zaprinast and morphine. Furthermore, NO synthase inhibitor ($_L-NMMA$), guanylyl cyclase inhibitor (ODQ) or a potassium channel blocker (glibenclamide) were intrathecally administered to verify the involvement of the NO-cGMP- potassium channel pathway on the antinociception effect of zaprinast. Results: Both zaprinast and morphine produced an antinociceptive effect during phase 1 and phase 2 in the formalin test. Isobolographic analysis revealed a synergistic interaction after the intrathecal administration of the zaprinast-morphine mixture in both phases. Intrathecal $_L-NMMA$, ODQ and glibenclamide did not reverse the antinociception of zaprinast in either phase. Conclusions: These results suggest that zaprinast, morphine and the mixture of the two drugs are effective against acute pain and they facilitated pain state at the spinal level. Thus, the spinal combination of zaprinast with morphine may be useful for the management of pain. However, the NO-sensitive cGMP-potassium channel pathway did not contribute to the antinocieptive mechanism of zaprinast in the spinal cord.

Effects of Schisandra chinensis fruit extract and gomisin A on the contractility of penile corpus cavernosum smooth muscle: a potential mechanism through the nitric oxide - cyclic guanosine monophosphate pathway

  • Choi, Bo Ram;Kim, Hye Kyung;Park, Jong Kwan
    • Nutrition Research and Practice
    • /
    • v.12 no.4
    • /
    • pp.291-297
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: This study evaluated the effects and molecular mechanisms of the Schisandra chinensis fruit extract (SC) and its major compound gomisin A (GA), on the contractility of rabbit penile corpus cavernosum smooth muscle (PCCSM). MATERIALS/METHODS: PCCSM was exposed to SC or GA after appropriate pretreatment with nitric oxide synthase (NOS) blocker, guanylate cyclase blocker, adenylyl cyclase blocker or protein kinase A blocker. Subsequently, we evaluated the cyclic nucleotide in the perfusate by radioimmunoassay, protein expression level of neuronal NOS (nNOS) and endothelial NOS (eNOS) by western blot, and the interaction of SC or GA with udenafil and rolipram. RESULTS: Both SC and GA induce PCCSM relaxations in a concentration-dependent manner. Pretreatment with NOS blocker, guanylate cyclase blocker, adenylyl cyclase blocker or protein kinase A blocker result in significantly decreased relaxation. SC and GA also induce the levels of cyclic nucleotide in the perfusate in a concentration-dependent manner. Perfusion with GA also showed significantly higher levels of eNOS protein. Furthermore, the udenafil and rolipram induced relaxations of PCCSM were enhanced after exposure to SC and GA. Our results indicate that SC and GA induce the relaxation of PCCSM via the nitric oxide (NO)-cGMP and cAMP signaling pathways. CONCLUSIONS: The SC and GA are potential alternative treatments for men who want to consume natural products to ameliorate erectile function, or who do not respond to the commercially available medicines.

The Role of Nitric Oxide in Non-adrenergic Non-cholinergic Relaxation in the Rabbit Penile Corpus Cavernosum (토끼 음경해면체의 비-아드레날린 비-콜린성 이완반응에서 산화질소의 역할)

  • Park, Mi-Sun;Kim, Jin-Bo;Hong, Eun-Ju;Hong, Sung-Cheul
    • YAKHAK HOEJI
    • /
    • v.41 no.3
    • /
    • pp.370-380
    • /
    • 1997
  • The role of nitric oxide (NO) on the non-adrenergic non-cholinergic (NANC) relaxations induced by the short and prolonged electrical field stimulation (EFS) has been studied in the rabbit corpus cavernosum. In the presence of atropine and guanethidine the prolonged EFS (2-16 Hz) of corpus cavernosal strips precontracted with phenylephrine produced frequency-dependent relaxations, which were abolished by tetrodotoxin as shown in the relaxations induced gy the short EFS, indicating that their orgin is NANC nerve stimulation. $N^G$-nitro-L-arginine (L-NNA), inhibitor of nitirc oxide synthase, caused a concentration-dependent inhibition to the NANC relaxation, and at 100 M L-NNA the relaxation were virtually abolished. The inhibitory effect of L-NNA was reversed by L-arginine. Hemoglobin abolished the relaxations to NO and also caused a concentration-dependent inhibition of the NANC relaxation. The hemoglobin-resistant relaxation induced by EFS was eliminated by L-NNA. Methylene blue significantly reduced the NANC relaxation in a conentration-dependent manner. The NANC relaxation was not affected by a VIP-inactivating pepridase, alpha0chymotrypsin, whereas VIP-induced relaxation was completely abolished. NO- and VIP-induced relaxation were not affected by L-NNA. These results indicate that the NANC relaxation induced by prolonged EFS of the rabbit corpus cavernosum is mediated by NO-guanosine 3',5'-cyclic monophosphate pathway as shown in the relaxation induced by the short EFS, and that VIP release is not essential for the NANC relaxation of the rabbit corpus cavernosum and VIP is not involved the generation fo NO.

  • PDF

The inhibitory action of nitric oxide donor on the slow wave and spontaneous contraction in the guinea pig antral circular muscle (기니피그 유문부 윤상근의 서파 몇 자발적 수축에 대한 nitric oxide donor의 억제적 작용)

  • Kim, Tea-wan;La, Jun-ho;Yang, Il-suk
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.4
    • /
    • pp.691-699
    • /
    • 2000
  • We investigated the effects of nitric oxide (NO) donors, S-nitroso-L-cysteine (Cys-NO) and 3-morpholinosydnonimine hydrochloride (SIN-1), on the contractile and electrical activity of the circular muscle of guinea pig gastric antrum by using intracellular microelectrode technique. The gastric antral circular muscle showed spontaneous phasic contraction and slow wave of membrane potential. Cys-NO ($0.001{\sim}10{\mu}M$) and SIN-1 ($0.001{\sim}100{\mu}M$) reduced not only the tonic and phasic contraction but also the amplitude of slow wave in a concentration dependent manner. NO donors were more potent to inhibit phasic contraction than to do slow wave. These inhibitory effects of NO donors were mimicked by the membrane permeable guanosine-3',5'-cyclic monophosphate (cGMP) analogue, 8-bromo-cyclic GMP (8-br-cGMP, $10{\sim}300{\mu}M$). The inhibitory effects of SIN-1 and Cys-NO were antagonized by the guanylate cyclase inhibitor, 1H[ [1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, $10{\mu}M$). These results suggest that the inhibitory effects of NO donors on the mechanical and electrical activity is mainly mediated by cGMP pathway.

  • PDF

Phospholipase C-mediated vasorelaxing action of melatonin in rat isolated aorta (흰쥐 대동맥에서 phospholipase C를 경유한 melatonin의 혈관 이완 작용)

  • Kim, Shang-Jin;Baek, Sung-Soo;Kang, Hyung-Sub;Kim, Jin-Shang
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.4
    • /
    • pp.507-515
    • /
    • 2005
  • Melatonin, the principal hormone of the vertebral pineal gland, participates in the regulation of cardiovascular system in vitro and in vivo. However, the effects of melatonin on vascular tissues are still vague. The aim of this study was to assess the relationship between phospholipase C (PLC) and nitric oxide synthase (NOS)/cyclic guanosine 3',5'-monophosphate (cGMP) signaling cascade in the relaxatory action of melatonin in isolated rat aorta. Melatonin induced a concentration-dependent relaxation in phenylephrine (PE)- and KCl-precontracted endothelium intact (+E) aortic rings. In KCl-precontracted +E aortic rings, the melatonin-induced vasorelaxation was not inhibited by endothelium removal or by pretreatment with NOS inhibitors, L-$N^G$-nitor-arginine (L-NNA) and L-$N^G$-nitor-arginine methyl ester (L-NAME), guanylate cyclase (GC) inhibitors, methylene blue (MB) and 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (ODQ). In PE-precontracted +E aortic rings, the melatonin-induced vasorelaxation was inhibited by endothelium removal or by pretreatment with L-NNA, L-NAME, MB, ODQ and 2-nitro-4-carboxyphenyl-n,n-diphenylcarbamate (NCDC). Moreover, in without endothelium (-E) aortic rings and in the presence of L-NNA, L-NAME, MB and ODQ in +E aortic rings, the melatonin-induced residual relaxations and residual contractile responses to PE were not affected by NCDC, a PLC inhibitor. It is concluded that melatonin can evoke vasorelaxation due to inhibition of PLC pathway through the protein kinase G activation of endothelial NOS/cGMP signaling cascade.

Inhibitory effects of xylamine on the arterial contraction in rats (흰쥐 대동맥 수축에 대한 xylamine의 억제효과)

  • Kim, Sang-Jin;Kang, Hyung-sub;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.3
    • /
    • pp.389-397
    • /
    • 2004
  • The therapeutic efficacy of xylamine in the field of psychological medicine has been recognized for years and the drug is used to treat depression and some other conditions, but little is known about its mechanism of action on vascular system. Therefore, the present study was designed to investigate the influence of xylamine on the contractile responses of isolated rat thoracic arteries to phenylephrine(PE) and potassium chloride(KCl). Xylamine produced a concentration-dependent relaxation in PE-precontracted endothelium intact(+E) rat aortic rings, but not in a KCl-precontracted aortic rings. Also, xylamine inhibited the PE-induced contraction in concentration-dependent manner, but not in the high KCl-induced contraction in +E rings. This concentration-dependent inhibition was suppressed by the removal of the endothelium (-E). The inhibitory effects of xylamine($0.3{\mu}M$) on the PE-induced contractions were suppressed by N(G)-nitro-L-arginine(L-NNA), N(omega)-nitro-L-arginine methyl ester(L-NAME), aminoguanidine, dexamethasone, methylene blue, 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one(ODQ), indomethacin, ryanodine, tetrabutylammonium(TBA), lidocaine, procaine and 0 mM extracellular $Na^+$, but not by 2-nitro-4-carboxyphenyl-n,n-diphenylcarbamate(NCDC), lithium, nifedipine, verapamil, 0 mM extracellular $Ca^{2+}$, glibenclamide and clotrimazole. These findings suggest that xylamine could act as a vasorelaxant and direct inhibitor of arterial contraction. This vasorelaxation involves an endothelial nitric oxide (NO)/cGMP (guanosine 3',5'-cyclic monophosphate) pathway or cyclooxygenase system, and an interference with $Ca^{2+}$ release, TBA-sensitive $Ca^{2+}$-activated $K^+$ channels and $Na^+$$ channels.

The Role of Opioid Receptor on the Analgesic Action of Intrathecal Sildenafil in Rats (백서의 척수강 내로 투여한 Sildenafil의 진통효과에 대한 Opioid 수용체 역할에 관한 연구)

  • Lee, Hyung Gon;Jeong, Chang Young;Yoon, Myung Ha;Kim, Woong Mo;Shin, Seung Heon;Kim, Yeo Ok;Huang, Lan Ji;Cui, Jin Hua
    • The Korean Journal of Pain
    • /
    • v.20 no.1
    • /
    • pp.21-25
    • /
    • 2007
  • Background: Intrathecal sildenafil has produced antinociception by increasing the cGMP through inhibition of phosphodiesterase 5. Spinal opioid receptor has been reported to be involved in the modulation of nociceptive transmission. The aim of this study was to examine the role of opioid receptor in the effect of sildenafil on the nociception evoked by formalin injection. Methods: Rats were implanted with lumbar intrathecal catheters. Formalin testing was used as a nociceptive model. Formalin-induced nociceptive behavior (flinching response) was observed. To clarify the role of the opioid receptor for the analgesic action of sildenafil, naloxone was administered intrathecally 10 min before sildenafil delivery, and formalin was then injected 10 min later. Results: Intrathecal sildenafil produced dose-dependent suppression of flinches in both phases during the formalin test. Intrathecal naloxone reversed the analgesic effect of sildenafil in both phases. Conclusions: Sildenafil is active against the nociceptive state that's evoked by a formalin stimulus, and the opioid receptor is involved in the analgesic action of sildenafil at thespinal level.

Mechanistic insight into the progressive retinal atrophy disease in dogs via pathway-based genome-wide association analysis

  • Sheet, Sunirmal;Krishnamoorthy, Srikanth;Park, Woncheoul;Lim, Dajeong;Park, Jong-Eun;Ko, Minjeong;Choi, Bong-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.765-776
    • /
    • 2020
  • The retinal degenerative disease, progressive retinal atrophy (PRA) is a major reason of vision impairment in canine population. Canine PRA signifies an inherently dissimilar category of retinal dystrophies which has solid resemblances to human retinis pigmentosa. Even though much is known about the biology of PRA, the knowledge about the intricate connection among genetic loci, genes and pathways associated to this disease in dogs are still remain unknown. Therefore, we have performed a genome wide association study (GWAS) to identify susceptibility single nucleotide polymorphisms (SNPs) of PRA. The GWAS was performed using a case-control based association analysis method on PRA dataset of 129 dogs and 135,553 markers. Further, the gene-set and pathway analysis were conducted in this study. A total of 1,114 markers associations with PRA trait at p < 0.01 were extracted and mapped to 640 unique genes, and then selected significant (p < 0.05) enriched 35 gene ontology (GO) terms and 5 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways contain these genes. In particular, apoptosis process, homophilic cell adhesion, calcium ion binding, and endoplasmic reticulum GO terms as well as pathways related to focal adhesion, cyclic guanosine monophosphate)-protein kinase G signaling, and axon guidance were more likely associated to the PRA disease in dogs. These data could provide new insight for further research on identification of potential genes and causative pathways for PRA in dogs.

Studies on the Fermentative Production of Guanosine-5'-Monophosphate by Microorganism - Part II. Growth responses of 5'-XMP aminase producing Brevibacterium ammoniagenes BA 12-7 - (미생물(微生物)에 의한 5'-GMP의 생산(生産)에 관한 연구(硏究) - 제2보(第2報). 5'-XMP aminase 생산균주인 Brevibacterium ammoniagenes BA 17-2의 생육도 -)

  • Kim, Woo-Yeon;Kong, Un-Young;Son, Choong-Hong;Bae, Jong-Chan;Yu, Ju-Hyun
    • Applied Biological Chemistry
    • /
    • v.24 no.2
    • /
    • pp.105-111
    • /
    • 1981
  • Growth responses of Brevibadterium ammoniagenes BA 17-2, which had been obtained by the treatment of several mutagens in our previous report, were investigated to select the preliminary optimal concentrations of phosphate, $Mg^{++}$, $Mn^{++}$ and thiamine for the production of 5'-XMP aminase. In this experiment it was shown that the concentration of phosphate in the medium has an important effect on the growth of microorganism. Using the medium containing 0.2% of $MgSO_4{\cdot}7H_2O$, 3mg/l of $MnSO_4{\cdot}H_2O$and $1\;mg/l$ of thiamine-HCl, the maximum cell mass was obtained at the concentration of 0.4% of $KH_2PO_4$ and $K_2HPO_4$, respectively. Above the concentration of these phosphates, cell growth was inhibited as the phosphate concentration increased to 1%, but the inhibition was overcome by the addition of 1% of $MgSO_4{\cdot}7H_2O$ and 3mg/l of thiamine-HCl. The 5'-XMP aminase activity was also influenced by the concentration of phosphate, $Mg^{++}$, $Mn^{++}$, and thiamine. In addition, the optimal culture pH and temperature for the enzyme activity were found to be 6.8 and $32^{\circ}C$, respectively.

  • PDF

Nitric Oxide/cGMP-Independent Vasorelaxation Enhanced by L-Arginine (L-Arginine의 산화질소생성과 무관한 혈관이완효과)

  • 문승호;이종은;유광재;오봉석;이동준
    • Journal of Chest Surgery
    • /
    • v.31 no.2
    • /
    • pp.102-107
    • /
    • 1998
  • It has not been clear whether L-arginine plays solely a role contributing to vascular nitric oxide (NO) synthesis. To investigate the mechanisms by which L-arginine induces vasorelaxation, effects of L-arginine on the isometric tension, and tissue NOx and cyclic guanosine monophosphate(cGMP) contents were examined in the isolated rat thoracic aorta. L-Arginine induced a dose-dependent relaxation of aortic rings only with intact endothelium only. The vasorelaxation response to low concentrations of L-arginine was abolished by the pretreatment with NG-nitro-L-arginine methyl ester(L-NAME, 10-4 mol/L), whereas the relaxation caused by higher concentrations L-arginine(10-5-10-3 mol/L) was maintained and even more pronounced in the presence of L-NAME. L-Arginine did not affect the vascular tension precontracted with KCl. The vascular tissue contents of NOx/cGMP were not significantly affected by L-arginine, while they were decreased by L-NAME. L-Arginine could not completely recover the NOx/cGMP decreased by L-NAME. Methylene blue only partially antagonized the relaxation response to L-arginine. Indomethacin did not affect the L-arginine-induced vasorelaxation, whereas ouabain markedly attenuated the relaxation. It is suggested that L-arginine induces vasorelaxation not only through its contribution to NO synthesis, but also through enhancing another endothelium-dependent mechanism which is NO/cGMP-independent and cyclooxygenase- independent.

  • PDF