• 제목/요약/키워드: Grunwald-Winstein correlation

검색결과 35건 처리시간 0.014초

Correlation of the Rates on Solvolysis of 2,2,2-Trichloroethyl Chloroformate Using the Extended Grunwald-Winstein Equation

  • Koh, Han-Joong;Kang, Suk-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1729-1733
    • /
    • 2012
  • The solvolysis rate constants of 2,2,2-trichloroethyl chloroformate ($Cl_3CCH_2OCOCl$, $\mathbf{3}$) in 30 different solvents are well correlated with the extended Grunwald-Winstein equation, using the $N_T$ solvent nucleophilicity scale and the $Y_{Cl}$ solvent ionizing scale, with sensitivity values of $1.28{\pm}0.06$ and $0.46{\pm}0.03$ for $l$ and $m$, respectively. The activation enthalpies (${\Delta}H^{\neq}$) are 10.1 to 12.8 $kcal{\cdot}mol^{-1}$ and the activation entropies (${\Delta}S^{\neq}$) are -27.8 to -36.8 $cal{\cdot}mol^{-1}{\cdot}K^{-1}$, which is consistent with the proposed bimolecular reaction mechanism. The kinetic solvent isotope effect ($k_{MeOH}/k_{MeOD}$) of 2.39 is also in accord with $S_N2$ mechanism probably assisted by general-base catalysis.

Correlation of the Rates of Solvolysis of 1-Piperidincarbonyl Chloride Using the Extended Grunwald-Winstein Equation

  • Choi, Ho-June;Ali, Dildar;Lee, Jong-Pal;Yang, Ki-Yull;Park, Jong-Keun;Koo, In-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권11호
    • /
    • pp.3941-3946
    • /
    • 2011
  • The specific rates of sovolysis of 1-piperidincarbonyl chloride (1) have been determined in 26 pure and binary solvents at $25.0^{\circ}C$. Comparison of the specific rates of solvolyses of 1 with those for p-methoxybenzoyl chloride and those for 4-morpholinecarbonyl chloride in terms of linear free energy relationships (LFER) are helpful in mechanistic considerations, as is also treatment in terms of the extended Grunwald-Winstein equation. It is proposed that the solvolyses of 1 in binary aqueous solvent mixtures proceed through an ionization [I] pathway rather than through an $S_N1/S_N2$ and/or ionization/(ionization-elimination) = [I/(I-E)] pathway.

Correlation of the Rates of Solvolysis of Methyl Fluoroformate Using the Extended Grunwald-Winstein Equation

  • Seong, Mi-Hye;Choi, Song-Hee;Lee, Yong-Woo;Kyong, Jin-Burm;Kim, Dong-Kook;Kevill, Dennis N.
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권10호
    • /
    • pp.2408-2412
    • /
    • 2009
  • The specific rates of solvolysis of methyl fluoroformate have been measured at $40.0\;{^{\circ}C}$ in several hydroxylic solvents. Analysis with the extended Grunwald-Winstein equation leads to sensitivities toward changes in solvent nucleophilicity (l) of $1.33\;{\pm}\;0.10$ and toward changes in solvent ionizing power (m) $0.73\;{\pm}\;0.06$. For methanolysis, a solvent deuterium isotope effect of 3.98 is compatible with the incorporation of general-base catalysis into the substitution process. For four representative solvents, studies were made at several temperatures and activation parameters determined. These observations are also compared with those previously reported for alkyl halogenoformate esters and mechanistic conclusions are drawn.

Correlation of the Rates of Solvolysis of Isopropyl Fluoroformate Using the Extended Grunwald-Winstein Equation

  • Lee, So-Hee;Rhu, Chan-Joo;Kyong, Jin-Burm;Kim, Dong-Kook;Dennis N. Kevill
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권4호
    • /
    • pp.657-661
    • /
    • 2007
  • The specific rates of solvolysis of isopropyl fluoroformate are well correlated using the extended Grunwald-Winstein equation, with a sensitivity (l ) to changes in solvent nucleophilicity (NT) and a sensitivity (m) to changes in solvent ionizing power (YCl). The sensitivities (l = 1.59 ± 0.16 and m = 0.80 ± 0.06) toward changes in solvent nucleophilicity and solvent ionizing power, and the kF/kCl values are very similar to those for solvolyses of n-octyl fluoroformate, suggesting that the addition step of an addition-elimination mechanism is rate-determining. For methanolysis, a solvent deuterium isotope effect of 2.53 is compatible with the incorporation of general-base catalysis into the substitution process. The large negative values for the entropies of activation are consistent with the bimolecular nature of the proposed rate-determining step. These observations are also compared with those previously reported for the corresponding chloroformate and fluoroformate esters.

혼합용매에서의 용매화 (제 6 보). 수용성 이성분 혼합용매계에서 Benzyl nitrates 의 가용매 분해반응 (Solvation in Mixed Solvents (Part 6). Solvolysis of Benzyl Nitrates in Binary Aqueous Solvent Mixtures)

  • 이익춘;손세철;이해황;김인철
    • 대한화학회지
    • /
    • 제31권5호
    • /
    • pp.419-424
    • /
    • 1987
  • 메탄올, 에탄올, 아세토니트릴, 아세톤, THF 및 디옥산의 수용성 이성분 혼합용매계에서 MBN 및 BN의 가용매분해반응을 60$^{\circ}$C에서 속도론적으로 연구하였다. 반응속도는 비양성자성 혼합용매계에서 보다는 양성자성 혼합용매계에서 빠름을 알 수 있었으며, 이것은 양성자성 혼합용매계에 의한 수소결합효과가 전이상태를 안정화시키기 때문임을 알 수 있었다. 전이상태에 미치는 용매효과 및 벤질 치환기 효과등을 논의하기 위하여 Grunwald-Winstein 관계식, 확장된 Grunwald-Winstein 관계식 및 E$_T$(30)과 반응속도 상수사이의 관계식등을 적용하였으며, 결과로 부터 물함량이 많은 영역에서는 용매에 의한 electrophilic assistance가 크게 나타남을 알 수 있었다.

  • PDF

Analysis of the Solvolysis of Anthraquinone-2-Carbonyl Chloride in Various Mixed Solvents

  • Koh, Han Joong;Kang, Suk Jin
    • 대한화학회지
    • /
    • 제62권4호
    • /
    • pp.265-268
    • /
    • 2018
  • The solvolyses of anthraquinone-2-carbonyl chloride (1) were studied kinetically in 27 pure and various mixed solvents. The analysis using the extended Grunwald-Winstein equation in the solvolyses of anthraquinone-2-carbonyl chloride (1) obtained the l value of $2.11{\pm}0.11$, the m value of $0.54{\pm}0.06$, and the correlation coefficient of 0.955. The solvolysis reaction of 1 might proceed via an associative $S_N2$ mechanism enhancing bond making than bond breaking in the transition state (TS). This interpretation is further supported by a relatively large solvent kinetic isotope effect (SKIE, 2.27).

Solvolysis of (1S)-(+)-Menthyl Chloroformate in Various Mixed Solvents

  • Koh, Han Joong;Kang, Suk Jin
    • 대한화학회지
    • /
    • 제65권5호
    • /
    • pp.309-312
    • /
    • 2021
  • The solvolysis of (1s)-(+)-menthyl chloroformate (1) were studied kinetically in 28 pure and various mixed solvents. The analysis using the extended Grunwald-Winstein equation in the solvolysis of 1 obtained the l value of 2.46 ± 0.18, the m value of 0.91 ± 0.07, and the correlation coefficient of 0.950. The solvolysis of 1 might proceed via an associative SN2 mechanism enhancing bond making than bond breaking in the transition state (TS). The value of l/m is 2.7 within the ranges of value found in associative SN2 reaction. This interpretation is further supported by a relatively large solvent kinetic isotope effect (SKIE, 2.16).

Correlation of the Rates of Solvolysis of Electron-Rich Benzoyl Chloride Using the Extended Grunwald-Wistein Equation

  • Oh, Hyunjung;Choi, Hojune;Park, Jong Keun;Yang, Kiyull;Koo, In Sun
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2697-2701
    • /
    • 2013
  • The solvolysis rate constants of piperonyloyl chloride (1) in 27 different solvents are well correlated with the extended Grunwald-Winstein equation, using the $N_T$ solvent nucleophilicity scale, $Y_{Cl}$ solvent ionizing scale, and I aromatic ring parameter with sensitivity values of $0.30{\pm}0.05$, $0.71{\pm}0.02$, and $0.60{\pm}0.04$ for l, m, and h, respectively. The solvent kinetic isotope effect values (SKIE, $k_{MeOH}/k_{MeOD}$ and $k_{50%MeOD-50%D2O}$) of 1.16 and 1.12 were also in accord with the values for the $S_N1$ mechanism and/or the dissociative $S_N2$ mechanism. The product selectivity values (S) for solvolysis of 1 in alcohol/water mixtures were in the range of 0.5 to 1.9, which is also consistent with the proposed unimolecular ionization mechanism.

Correlation of the Rates of Solvolysis of Phenyl Fluorothionoformate

  • Choi, Song-Hee;Seong, Mi-Hye;Lee, Yong-Woo;Kyong, Jin-Burm;Kevill, Dennis N.
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1268-1272
    • /
    • 2011
  • The specific rates of solvolysis of phenyl fluorothionoformate (PhOCSF, 1) have been determined in 22 pure and binary solvents at $10.0^{\circ}C$. The extended Grunwald-Winstein equation has been applied to the specific rates of solvolysis of 1 over the full range of solvents. The sensitivities (l = $1.32{\pm}0.13$ and m = $0.39{\pm}0.08$) toward the changes in solvent nucleophilicity and solvent ionizing power, and the $k_F/k_{Cl}$ values are similar to those previously observed for solvolyses of acyl haloformate esters, consistent with the addition step of an additionelimination pathway being rate-determining. The large negative values for the entropies of activation are consistent with the bimolecular nature of the proposed rate-determining step. The results are compared with those reported earlier for phenyl chloroformate and chlorothionoformate esters and mechanistic conclusions are drawn.