DOI QR코드

DOI QR Code

Correlation of the Rates of Solvolysis of Methyl Fluoroformate Using the Extended Grunwald-Winstein Equation

  • Seong, Mi-Hye (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Choi, Song-Hee (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Lee, Yong-Woo (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Kyong, Jin-Burm (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Kim, Dong-Kook (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Kevill, Dennis N. (Department of Chemistry and Biochemistry, Northern Illinois University)
  • Published : 2009.10.20

Abstract

The specific rates of solvolysis of methyl fluoroformate have been measured at $40.0\;{^{\circ}C}$ in several hydroxylic solvents. Analysis with the extended Grunwald-Winstein equation leads to sensitivities toward changes in solvent nucleophilicity (l) of $1.33\;{\pm}\;0.10$ and toward changes in solvent ionizing power (m) $0.73\;{\pm}\;0.06$. For methanolysis, a solvent deuterium isotope effect of 3.98 is compatible with the incorporation of general-base catalysis into the substitution process. For four representative solvents, studies were made at several temperatures and activation parameters determined. These observations are also compared with those previously reported for alkyl halogenoformate esters and mechanistic conclusions are drawn.

Keywords

References

  1. Kevill, D. N.; Kim, J. C.; Kyong, J. B. J. Chem. Res. Synop. 1999, 150.
  2. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 1998, 63, 2120. https://doi.org/10.1021/jo9714270
  3. Kyong, J. B.; Won, H.; Kevill, D. N. Int. J. Mol. Sci. 2005, 6, 87. https://doi.org/10.3390/i6010087
  4. Villas-Boas, S. G.; Delicado, D. G.; Akesson, M.; Nielson, J. Anal. Biochem. 2003, 322, 134. https://doi.org/10.1016/j.ab.2003.07.018
  5. Biermann, U.; Metzger, J. O. J. Am. Chem. Soc. 2004, 126, 10319. https://doi.org/10.1021/ja048904y
  6. Grunwald, E.; Winstein, S.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700. https://doi.org/10.1021/ja01150a078
  7. Schadt, F. L.; Bentley, T. W.; Schleyer, P. V. R. J. Am. Chem. Soc. 1976, 98, 7667. https://doi.org/10.1021/ja00440a037
  8. Kevill, D. N. In Advances in Quantitative Structure-Property Relationships, Vol. 1; Charton, M., Ed.; JAI Press: Greenwich, CT, 1996; pp 81.
  9. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121. https://doi.org/10.1002/9780470171967.ch5
  10. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc., Perkin Trans. 2 2002, 240.
  11. Queen, A; Nour, T. A. J. Chem. Soc., Perkin Trans. 2 1976, 935.
  12. Kevill, D. N. In The Chemistry of the Functional Groups: The Chemistry of Acyl Halides; Patai, S., Ed.; Wiley: New York, 1972; Chapter 12.
  13. Harris, J. M.; Shafer, S. G.; Moffatt, J. R.; Becker, A. R. J. Am. Chem. Soc. 1979, 101, 3295. https://doi.org/10.1021/ja00506a026
  14. Bentley, T. W.; Bowen, C. T.; Parker, W.; Watt, C. I. F. J. Chem. Soc., Perkin Trans. 2 1980, 1244.
  15. Swain, C. G.; Scott, C. B. J. Am. Chem. Soc. 1953, 75, 246. https://doi.org/10.1021/ja01097a520
  16. Song, B. D.; Jencks, W. P. J. Am. Chem. Soc. 1989, 111, 8470. https://doi.org/10.1021/ja00204a021
  17. Wiberg, K. B.; Rablen, P. R. J. Org. Chem. 1998, 63, 3722. https://doi.org/10.1021/jo980463b
  18. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 2004, 69, 7044. https://doi.org/10.1021/jo0492259
  19. Kyong, J. B.; Kim, Y. G.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2000, 21, 662.
  20. Kevill, D. N.; Kyong, J. B.; Weitl, F. L. J. Org. Chem. 1990, 55, 4304. https://doi.org/10.1021/jo00301a019
  21. Kevill, D. N.; Kyong, J. B. J. Org. Chem. 1992, 57, 258. https://doi.org/10.1021/jo00027a046
  22. Seong, M. H.; Kyong, J. B.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2008, 29, 1747. https://doi.org/10.5012/bkcs.2008.29.9.1747
  23. Kyong, J. B.; Ryu, S. H.; Kevill, D. N. Int. J. Mol. Sci. 2006, 7, 186. https://doi.org/10.3390/i7070186
  24. Kyong, J. B.; Park, B. C.; Kim, C. B.; Kevill, D. N. J. Org. Chem. 2000, 65, 8051 https://doi.org/10.1021/jo005630y
  25. Ryu, Z. H.; Shin, S. H.; Lee, J. P.; Lim, G. T.; Bentley, T. W. J. Chem. Soc. Perkin Trans. 2 2002, 1283.
  26. Oh, Y. H.; Jang, G. G.; Lim, G. T.; Ryu, Z. H. Bull. Korean Chem. Soc. 2002, 23, 1083.
  27. Yew, K. H.; Koh, H. J.; Lee, H. W.; Lee, I. J. Chem. Soc. Perkin Trans. 2 1995, 2263.
  28. Koo, I. S.; Yang, K.; Kang, K.; Lee. I. Bull. Korean Chem. Soc. 1998, 19, 968.
  29. Kevill, D. N.; Miller, B. J. Org. Chem. 2002, 67, 7399. https://doi.org/10.1021/jo020467n
  30. Lee, S. H.; Rhu, C. J.; Kyong, J. B.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2007, 28, 657. https://doi.org/10.5012/bkcs.2007.28.4.657
  31. Olah, G. A. J. Org. Chem. 1979, 44, 3872. https://doi.org/10.1021/jo01336a027

Cited by

  1. Use of Empirical Correlations to Determine Solvent Effects in the Solvolysis of S-Methyl Chlorothioformate vol.11, pp.5, 2010, https://doi.org/10.3390/ijms11052253
  2. Correlation of the Rates of Solvolysis of i-Butyl Fluoroformate and a Consideration of Leaving-Group Effects vol.12, pp.12, 2011, https://doi.org/10.3390/ijms12117806
  3. Aminolysis of Y- Substituted Phenyl Benzenesulfonates in MeCN: Effect of Medium on Reactivity and Reaction Mechanism vol.32, pp.spc8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2955
  4. Kinetic Studies that Evaluate the Solvolytic Mechanisms of Allyl and Vinyl Chloroformate Esters vol.14, pp.4, 2013, https://doi.org/10.3390/ijms14047286
  5. Correlation of the Rates of Solvolysis of t-Butyl Fluoroformate Using the Extended Grunwald-Winstein Equation vol.31, pp.11, 2009, https://doi.org/10.5012/bkcs.2010.31.11.3366
  6. Kinetic evaluation of the solvolysis of isobutyl chloro- and chlorothioformate esters vol.7, pp.None, 2009, https://doi.org/10.3762/bjoc.7.62
  7. Correlation of the Rates of Solvolysis of Phenyl Fluorothionoformate vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1268
  8. Rate and Product Studies of 1-Adamantylmethyl Haloformates Under Solvolytic Conditions vol.33, pp.11, 2009, https://doi.org/10.5012/bkcs.2012.33.11.3657
  9. Correlation of the rates of solvolysis of acetic p‐toluenesulfonic anhydride (acetyl p‐toluenesulfonate) and a comparison with acetyl halides vol.26, pp.12, 2013, https://doi.org/10.1002/poc.3146