• 제목/요약/키워드: Growth hormone-transgenesis

검색결과 3건 처리시간 0.017초

Growth Performance of Transgenic Mud Loach Misgurnus mizolepis Carrying a GH Transgene Driven by Mud Loach C-Type Lectin Regulator

  • Song, Ha-Yeon;Kim, Dong-Soo
    • Fisheries and Aquatic Sciences
    • /
    • 제15권1호
    • /
    • pp.43-47
    • /
    • 2012
  • Growth hormone (GH) transgenesis in fish has the potential to improve aquaculture efficiency and capacity. However, many fast-growing transgenic fish have experienced side effects caused by excess GH expression. To overcome this unwanted issue associated with several GH transgenic mud loach Misgurnus mizolepis lines carrying GH construct driven by a strong ${\beta}$-actin regulator ($pml{\beta}$-actGH), we performed an alternative version of GH autotransgenesis using a weaker but more stable regulator, the mud loach lectin promoter. GH transgenesis with a pmlectGH construct consisting of the mud loach GH gene driven by the 2.3-kb lectin promoter exhibited significant growth stimulation. However, the extent of the growth acceleration in pmlectGH transgenics (six times maximum when assessed 2 months post hatching) was much less than that in transgenic individuals carrying the $pml{\beta}$-actGH construct. Additionally, the extraordinary gigantism that was common in $pml{\beta}$-actGH-transgenic mud loaches was diminished in transgenic loaches harboring the pmlectGH construct. Transgenic founders (pmlectGH) successfully transmitted their transgene into the next generation with up to 41% frequency. Growth stimulation also persisted in the transgenic F1 strains, with a seven-fold increase in maximum body weight at 6 months of age.

Growth Response to a GH-Autotransgenesis in Common Carp Cyprinus carpio

  • Noh, Choong-Hwan;Kim, Dong-Soo
    • Fisheries and Aquatic Sciences
    • /
    • 제15권1호
    • /
    • pp.37-41
    • /
    • 2012
  • Autotransgenic manipulation with a growth hormone (GH)-construct is a potential approach to improving the growth rates of farmed fish. Here, we present the generation of GH-autotransgenic common carp Cyprinus carpio carrying a transgene comprised of the carp homologous GH gene and a ${\beta}$-actin regulator. Autotransgenic carp showed similar viability to their non-transgenic siblings. Early growth characteristics of founder autotransgenic carp up to 50 days postfertilization were highly variable among individuals; i.e., some fish exhibited significant growth depression, while others showed dramatic acceleration of growth, achieving greater than sixfold increases in body weight relative to their non-transgenic counterparts. Stimulated growth performance became more notable with age and many transgenic individuals of the largest class reached 5 kg within 8 or 9 months, which is at least 10 times heavier than the average body weight of communally grown non-transgenics. Four of six founder transgenic males were successful in passing the transgene to their $F_1$ offspring with frequencies ranging from 19 to 36%. Growth stimulations were also persistent in all $F_1$ progeny groups examined.

Transgenesis in Fish: Indian Endeavour and Achievement

  • Pandian, T.J
    • 한국양식학회지
    • /
    • 제16권1호
    • /
    • pp.51-58
    • /
    • 2003
  • The first Indian transgenic fish was generated in 1991 using borrowed constructs from foreign sources. To construct transformation vectors for the indigenous fishes, growth hormone genes of rohu (r-CH), Labeo rohita and catfish, Heteropneustes fossilis were isolated, cloned and sequenced; their fidelity was confirmed in prokaryotic and eukaryotic systems. A vector was constructed with grass carp b-actin promoter driving the expression of r-GH. Rohu eggs are large. fragile and swell 2~3 times. when fertilized. Hence they were amenable only for electroporated sperm-mediated gene transfer. Accordingly, the sperm electroporation technique was standardized to ensure 25% hatchling survival and 37% Presumptive transgenics without suffering any deformity. Southern analysis confirmed genomic integration in 15% of the tested individuals (Ti) belonging to family lines 2 and 3: another 25% of the Juveniles (Te) were also proved transgenic but with the transgene persisting extrachromosomally for longer than 1 to 2 years. perhaps due to the presence of replicon in the vector. Transgenics belonging to different family lines grew 6~8 times faster than the respective controls. Difference in growth trends of Ti and Te within a family line was not significant. In the Ti family 3 remarkable growth acceleration was sustained for a period longer than 36 weeks but in those of family 2, it gradually decreased. All transgenic fishes including the rohu converted the food at a significantly higher efficiency. Barring the transgenic mudloach, all the other transgenic fishes consumed food at significantly reduced rate.