• Title/Summary/Keyword: Growth environment sensor data

Search Result 49, Processing Time 0.035 seconds

Development of a Data Acquisition System for the Long-term Monitoring of Plum (Japanese apricot) Farm Environment and Soil

  • Akhter, Tangina;Ali, Mohammod;Cha, Jaeyoon;Park, Seong-Jin;Jang, Gyeang;Yang, Kyu-Won;Kim, Hyuck-Joo
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.426-439
    • /
    • 2018
  • Purpose: To continuously monitor soil and climatic properties, a data acquisition system (DAQ) was developed and tested in plum farms (Gyewol-ri and Haechang-ri, Suncheon, Korea). Methods: The DAQ consisted of a Raspberry-Pi processor, a modem, and an ADC board with multiple sensors (soil moisture content (SEN0193), soil temperature (DS18B20), climatic temperature and humidity (DHT22), and rainfall gauge (TR-525M)). In the laboratory, various tests were conducted to calibrate SEN0193 at different soil moistures, soil temperatures, depths, and bulk densities. For performance comparison of the SEN0193 sensor, two commercial moisture sensors (SMS-BTA and WT-1000B) were tested in the field. The collected field data in Raspberry-Pi were transmitted and stored on a web server database through a commercial communications wireless network. Results: In laboratory tests, it was found that the SEN0193 sensor voltage reading increased significantly with an increase in soil bulk density. A linear calibration equation was developed between voltage and soil moisture content depending on the farm soil bulk density. In field tests, the SEN0193 sensor showed linearity (R = 0.76 and 0.73) between output voltage and moisture content; however, the other two sensors showed no linearity, indicating that site-specific calibration is important for accurate sensing. In the long-term monitoring results, it was observed that the measured climate temperature was almost the same as website information. Soil temperature information was higher than the values measured by DS18B20 during spring and summer. However, the local rainfall measured using TR 525M was significantly different from the values on the website. Conclusion: Based on the test results obtained using the developed monitoring system, it is thought that the measurement of various parameters using one device would be helpful in monitoring plum growth. Field data from the local farm monitoring system can be coupled with website information from the weather station and used more efficiently.

Design of Emergency Notification Smart Farm Service Model based on Data Service for Facility Cultivation Farms Management (시설 재배 농가 관리를 위한 데이터 서비스 기반의 비상 알림 스마트팜 서비스 모델 설계)

  • Bang, Chan-woo;Lee, Byong-kwon
    • Journal of Advanced Technology Convergence
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Since 2015, the government has been making efforts to distribute Korean smart farms. However, the supply is limited to large-scale facility vegetable farms due to the limitations of technology and current cultivation research data. In addition, the efficiency and reliability compared to the introduction cost are low due to the simple application of IT technology that does not consider the crop growth and cultivation environment. Therefore, in this paper, data analysis services was performed based on public and external data. To this end, a data-based target smart farm system was designed that is suitable for the situation of farms growing in facilities. To this end, a farm risk information notification service was developed. In addition, light environment maps were provided for proper fertilization. Finally, a disease prediction model for each cultivation crop was designed using temperature and humidity information of facility farms. Through this, it was possible to implement a smart farm data service by linking and utilizing existing smart farm sensor data. In addition, economic efficiency and data reliability can be secured for data utilization.

Developing of VOC sensor Signal Processing System using Embedded System on the Web Environment (웹 환경에서 임베디드 시스템을 이용한 VOC센서 원격 신호 모니터링 시스템 개발)

  • Park, Jin-Kwan;Lim, Hae-Jin;Nam, Si-Byung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.375-383
    • /
    • 2011
  • Recent advances in digital technology and diversified internet services have resulted in a rapid growth of research on monitering systems using embedded web servers in USN systems. In designing USN systems equipped with wireless sensor modules requiring extra power for heating sensors for their appropriate operations, excessive power consumption introduces inefficiency to the entire system. In this paper, using embedded systems in web environment, we develop a remote-monitoring system with VOC (Volatile Organic Compounds) sensor signal, and propose a real time method of processing sensor-data streams by way of the serial bus from the sensor module in the USN system. The proposed system has an advantage of monitering the harmful gases on real-time basis and can be used semi-permanently by providing the sensor module with power through the serial bus. The harmful gas to be detected by the VOC sensor module is Toluene and the sensor module is composed of TGS-2602 VOC(Volatile Organic Compounds) sensors of FIGARO. The detected signal is transferred to the embedded web server using the RS-485 serial communication device. The proposed remote VOC monitering system is designed to coordinate in such a way that the VOC sensor module and embedded web server (EMPOS-II) work together effectively for real time monitering of harmful gases on the web at any places where the internet is connected.

Security Enhancement to an Biometric Authentication Protocol for WSN Environment (WSN 환경에서 Biometric 정보를 이용한 안전한 사용자 인증 스킴의 설계)

  • Lee, Youngsook
    • Convergence Security Journal
    • /
    • v.16 no.6_2
    • /
    • pp.83-88
    • /
    • 2016
  • Over recent years there has been considerable growth in interest in the use of biometric systems for personal authentication. Biometrics is a field of technology which has been and is being used in the identification of individuals based on some physical attribute. By using biometrics, authentication is directly linked to the person, rather than their token or password. Biometric authentication is a type of system that relies on the unique biological characteristics of individuals to verify identity for secure access to electronic systems. In 2013, Althobati et al. proposed an efficient remote user authentication protocol using biometric information. However, we uncovered Althobati et al.'s protocol does not guarantee its main security goal of mutual authentication. We showed this by mounting threat of data integrity and bypassing the gateway node attack on Althobati et al.'s protocol. In this paper, we propose an improved scheme to overcome these security weaknesses by storing secret data in device. In addition, our proposed scheme should provide not only security, but also efficiency since sensors in WSN(Wireless Sensor Networks) operate with resource constraints such as limited power, computation, and storage space.

A Study on IoT based Real-Time Plants Growth Monitoring for Smart Garden

  • Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.130-136
    • /
    • 2020
  • There are many problems that occur currently in agriculture industries. The problems such as unexpected of changing weather condition, lack of labor, dry soil were some of the reasons that may cause the growth of the plants. Condition of the weather in local area is inconsistent due to the global warming effect thus affecting the production of the crops. Furthermore, the loss of farm labor to urban manufacturing jobs is also the problem in this industry. Besides, the condition for the plant like air humidity, air temperature, air quality index, and soil moisture are not being recorded automatically which is more reason for the need of implementation system to monitor the data for future research and development of agriculture industry. As of this, we aim to provide a solution by developing IoT-based platform along with the irrigation for increasing crop quality and productivity in agriculture field. We aim to develop a smart garden system environment which the system is able to auto-monitoring the humidity and temperature of surroundings, air quality and soil moisture. The system also has the capability of automating the irrigation process by analyzing the moisture of soil and the climate condition (like raining). Besides, we aim to develop user-friendly system interface to monitor the data collected from the respective sensor. We adopt an open source hardware to implementation and evaluate this research.

Analysis of growth environment by smart farm cultivation of oyster mushroom 'Chunchu No 2' (병재배 느타리버섯 '춘추 2호'의 스마트팜 재배를 통한 생육환경 분석)

  • Lee, Chan-Jung;Park, Hye-Sung;Lee, Eun-Ji;Kong, Won-Sik;Yu, Byeong-Kee
    • Journal of Mushroom
    • /
    • v.17 no.3
    • /
    • pp.119-125
    • /
    • 2019
  • This study aims to report the results for the analysis of the growth environment by applying smart farm technology to "Chunchu No 2" farmers in order to develop an optimal growth model for precision cultivation of bottle-grown oyster mushrooms. The temperature, humidity, carbon dioxide concentration, and illumination data were collected and analyzed using an environmental sensor installed to obtain growth environment data from the oyster mushroom cultivator. Analysis of the collected temperature data revealed that the temperature at the time of granulation was $19.5^{\circ}C$ after scraping, and the mushroom was generated and maintained at about $21^{\circ}C$ until the bottle was flipped. When the fruiting body grew and approached harvest time, mushrooms were harvested while maintaining the temperature between $14^{\circ}C$ and $18^{\circ}C$. The humidity was maintained at almost 100% during the complete growth stage. Carbon dioxide concentration gradually increased until 3 days after the beginning of cultivation, and then increased rapidly to almost 5,500 ppm. From the 6th day, carbon dioxide concentration was gradually decreased through ventilation and was maintained at 1,600 ppm during harvest. Light intensity of 8 lux was irradiated up to day 6 after seeding, and growth was then continued while periodically irradiating 4 lux light. The fruiting body characteristics of "Chunchu No 2" cultivated in the farmhouse were as follows: pileus diameter of 26.5 mm and thickness of 4.9 mm, stipe thickness of 8.9 mm, and length of 68.7 mm. The fruiting body yield was 166.8 g/850 ml, and the individual weight was 12.8 g/10 units.

Channel Analysis of Wireless Sensor Networks (무선 센서 네트워크 채널 분석)

  • Jung, Kyung-Kwon;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.179-186
    • /
    • 2008
  • In proportion as the growth of the wireless sensor network applications, we need for more accuracy wireless channel information. In the case of indoor or outdoor wireless sensor networks, multipath propagation causes severe problems in terms of fading. Therefore, a path-loss model for multipath environment is required to optimize communication systems. This paper deals with log-normal path loss modeling of the indoor 2.4 GHz channel. We measured variation of the received signal strength between the sender and receiver of which separation was increased from 1 to 30m. The path-loss exponent and the standard deviation of wireless channel were determined by fitting of the measured data. By using the PRR(Packet Reception Rate) of this model. Wireless sensor channel is defined CR(Connect Region), DR(Disconnected Region). In order to verify the characteristics of wireless channel, we performed simulations and experiments. We demonstrated that connection ranges are 24m in indoor, and 14m in outdoor.

  • PDF

Power efficiency research for application of IoT technology (사물인터넷 기술 적용을 위한 소비전력 효율화 연구)

  • Seo, Younghoon;Park, Eun-Cheol;Kang, Sunghwan;Hwang, Jae-Mun;Yun, Junghwan;Eom, Junyoung;Gwon, Hyeong-Jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.669-672
    • /
    • 2015
  • Recent Internet of Things (IoT, Internet of Things) that can be applied to various fields as the development of technology has been developed a lot of service and has been developed with the service also for crop management. To manage the essential elements of soil moisture in the crop growth but existing a direct person measuring the fluid point to carry the measuring instrument, if you take advantage of the WPAN (Wireless Personal Area Network) in this paper to manage sensor data, a fixed 3 points (30, 60, 90 cm) and can be managed can be scientifically analyzed the state of growth of the crop. Open field environment is utilized as it is less disturbance of the interference and the frequency of the radio frequency signal of the structure provides a relatively comfortable environment. Therefore, WPAN building and data transmission scheme of the minimum cost is to be developed. In addition, the operation to enter low power mode, the algorithm is necessary because a lot of restrictions on the power supply applied to the sensor nodes and the gateway is constructed in the open field. In the experiment, verifying the effectiveness by using a network configuration of each of the sensor nodes and the gateway, and provides a method for time synchronization of the operation and a low power mode. The study protocol for the RF communication with the LoRa and to enhance communication efficiency is needed in the future.

  • PDF

Crop Monitoring Technique Using Spectral Reflectance Sensor Data and Standard Growth Information (지상 고정형 작물 원격탐사 센서 자료와 표준 생육정보를 융합한 작물 모니터링 기법)

  • Kim, Hyunki;Moon, Hyun-Dong;Ryu, Jae-Hyun;Kwon, Dong-Won;Baek, Jae-Kyeong;Seo, Myung-Chul;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1199-1206
    • /
    • 2021
  • Accordingly, attention is also being paid to the agricultural use of remote sensing technique that non-destructively and continuously detects the growth and physiological status of crops. However, when remote sensing techniques are used for crop monitoring, it is possible to continuously monitor the abnormality of crops in real time. For this, standard growth information of crops is required and relative growth considering the cultivation environment must be identified. With the relationship between GDD (Growing Degree Days), which is the cumulative temperature related to crop growth obtained from ideal cultivation management, and the vegetation index as standard growth information, compared with the vegetation index observed with the spectralreflectance sensor(SRSNDVI & SRSPRI) in each rice paddy treated with standard cultivation management and non-fertilized, it was quantitatively identified as a time series. In the future, it is necessary to accumulate a database targeting various climatic conditions and varieties in the standard cultivation management area to establish a more reliable standard growth information.

Implementation of Swinery Integrated Management System in Ubiquitous Agricultural Environments (유비쿼터스 농업환경에서의 돈사 통합관리 시스템 구현)

  • Hwang, Jeong-Hwan;Lee, Meong-Hun;Ju, Hui-Dong;Lee, Ho-Chul;Kang, Hyun-Joong;Yoe, Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2B
    • /
    • pp.252-262
    • /
    • 2010
  • Recently, the USN (Ubiquitous Sensor Network) technology is emerging as an aspect of digital convergence trends which is being rapidly evolving in the whole society. The technological feasibility for the various application services using the USN is researched in numerous industries, but, in the agricultural field, the market of USN application service, technology adoption and commercialization have been delayed. In the agricultural field, the ubiquitous technologies could lead to huge change in the conventional surroundings such as growth environment of livestock, crop cultivation and harvest. In this paper, to offer a integrated management, we construct a u-swinery(ubiquitous swinery) system which is consisted with USN environmental sensors to collect information from physical phenomenon such as luminance, relative humidity, temperature and ammonia gas. Numbers of CCTV were also installed to monitor inside and outside of the swinery. The u-swinery integrated management system can monitor and control the condition of swinery from remote sites. Furthermore, by gathering the cumulative environmental data from the system, the optimal growth condition for the livestock could be created.