• Title/Summary/Keyword: Growth condition

Search Result 4,844, Processing Time 0.041 seconds

Effects of different levels of dietary crude protein on the physiological response, reproductive performance, blood profiles, milk composition and odor emission in gestating sows

  • Hongjun Kim;Xinghao Jin;Cheonsoo Kim;Niru Pan;Yoo Yong Kim
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1263-1273
    • /
    • 2023
  • Objective: This study was conducted to evaluate the effects of crude protein (CP) levels on the physiological response, reproductive performance, blood profiles, milk composition and odor emission in gestating sows. Methods: Seventy-two multiparous sows (Yorkshire×Landrace) of average body weight (BW), backfat thickness, and parity were assigned to one of six treatments with 10 or 11 sows per treatment in a completely randomized design. Experimental diets with different CP levels were as follows: i) CP11, corn-soybean-based diet containing 11% CP; ii) CP12, corn-soybean-based diet containing 12% CP; iii) CP13, corn-soybean-based diet containing 13% CP; iv) CP14, corn-soybean-based diet containing 14% CP; v) CP15, corn-soybean-based diet containing 15% CP; and vi) CP16: corn-soybean-based diet containing 16% CP. Results: There was no significant difference in the performance of sow or piglet growth when sows were fed different dietary protein levels. Milk fat (linear, p = 0.05) and total solids (linear, p = 0.04) decreased as dietary CP levels increased. Increasing dietary CP levels in the gestation diet caused a significant increase in creatinine at days 35 and 110 of gestation (linear, p = 0.01; linear, p = 0.01). The total protein in sows also increased as dietary CP levels increased during the gestation period and 24 hours postpartum (linear, p = 0.01; linear, p = 0.01). During the whole experimental period, an increase in urea in sows was observed when sows were fed increasing levels of dietary CP (linear, p = 0.01), and increasing blood urea nitrogen (BUN) concentrations were observed as well. In the blood parameters of piglets, there were linear improvements in creatinine (linear, p = 0.01), total protein (linear, p = 0.01), urea (linear, p = 0.01), and BUN (linear, p = 0.01) with increasing levels of dietary CP as measured 24 hours postpartum. At two measurement points (days 35 and 110) of gestation, the odor gas concentration, including amine, ammonia, and hydrogen sulfide, increased linearly when sows fed diets with increasing levels of dietary CP (linear, p = 0.01). Moreover, as dietary CP levels increased to 16%, the odor gas concentration was increased with a quadratic response (quadratic, p = 0.01). Conclusion: Reducing dietary CP levels from 16% to 11% in a gestating diet did not exert detrimental effects on sow body condition or piglet performance. Moreover, a low protein diet (11% CP) may improve dietary protein utilization and metabolism to reduce odor gas emissions in manure and urine in gestating sows.

Reproductive Maturity Onset and Tree Size in a Garcinia kola (Heckel) Coastal Humid Tropical Climate Plantation

  • Henry Onyebuchi Okonkwo;Olubunmi Ayokunle Koyejo;Joseph Okechukwu Ariwaodo;Nsien Iniobong Bruno
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.2
    • /
    • pp.73-80
    • /
    • 2023
  • Little is known of the life history of Garcinia kola; the objective of this study, therefore, was to assess the fruiting age and tree size of the species in a coastal humid tropical climate plantation condition. A total 103 trees were used in the study viz; 80 ten-year-old trees at reproductive maturity onset and 13 thirty-year-old trees with several cycles of reproduction that constitute two independent variables. Data collected were age of onset of flowering and size at reproductive maturity onset. Relative size at reproductive maturity onset (RSOM) was estimated as size at reproductive maturity onset (SOM) divided by asymptotic maximal size (AMS). Data analysis was conducted using pairwise t-test and principal component analysis (PCA). Reproductive maturity onset (flowering) was recorded in the ten-year-old stand eight (8) years after planting. Mean size at reproductive maturity onset (SOM) was height 5.32±1.7 m, dbh 0.11±0.03 m, total number of branches was 29.6±7.3, crown depth 5.24±1.05 m, crown diameter was 4.78±0.7 m, branch diameter 0.098±0.01 m, leaf length 0.13±0.02 m, leaf breadth 0.37±0.01 m, twig length 0.35±0.11 m and leaf per twig 6±0.84 and asymptotic maximal size (AMS) was height 19.85±0.76 m, dbh 0.95±0.09 m, total number of branches 62±5, crown depth 18.83±0.7 m, crown diameter 12.5±1.64 m, branch diameter 0.5±1.6 m, leaf length 0.16±0.023 m, leaf breadth 0.45±0.12 m, twig length 0.37±0.11 m and leaf per twig 19±7.5. Pairwise t-test analysis showed there was significant differences between SOM and AMS in all growth factors except leaf length, leaf breadth, and twig length. Highest relative size at reproductive maturity onset (RSOM) was recorded in leaf length 0.82, twig length 0.82, and leaf breadth 0.80, while, the lowest was branch diameter 0.11. Four components out of the total of eleven were extracted to explain the relationship in RSOM: Principal component one (PC1) explained 37.23%; PC2 26.4%, PC3 22.73%, and PC4 13.64%.

Photosynthetic and respiratory responses of the surfgrass, Phyllospadix japonicus, to the rising water temperature (수온 상승에 따른 게바다말의 광합성 및 호흡률 변화)

  • Hyegwang Kim;Jong-Hyeob Kim;Seung Hyeon Kim;Zhaxi Suonan;Kun-Seop Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.352-362
    • /
    • 2022
  • Photosynthesis and respiration of seagrasses are mainly controlled by water temperature. In this study, the photosynthetic physiology and respiratory changes of the Asian surfgrass Phyllospadix japonicus, which is mainly distributed on the eastern and southern coasts of Korea, were investigated in response to changing water temperature (5, 10, 15, 20, 25, and 30℃) by conducting mesocosm experiments. Photosynthetic parameters (maximum photosynthetic rate, Pmax; compensation irradiance, Ic; and saturation irradiance, Ik) and respiration rate of surfgrass increased with rising water temperature, whereas photosynthetic efficiency (α) was fairly constant among the water temperature conditions. The Pmax and Ik dramatically decreased under the highest water temperature condition (30℃), whereas the Ic and respiration rate increased continuously with the increasing water temperature. Ratios of maximum photosynthetic rates to respiration rates (Pmax : R) were highest at 5℃ and declined markedly at higher temperatures with the lowest ratio at 30℃. The minimum requirement of Hsat (the daily period of irradiance-saturated photosynthesis) of P. japonicus was 2.5 hours at 5℃ and 10.6 hours at 30℃ for the positive carbon balance. Because longer Hsat was required for the positive carbon balance of P. japonicus under the increased water temperature, the rising water temperature should have negatively affected the growth, distribution, and survival of P. japonicus on the coast of Korea. Since the temperature in the temperate coastal waters is rising gradually due to global warming, the results of this study could provide insights into surfgrass responses to future severe sea warming and light attenuation.

Mass rearing system for Neodryinus typhlocybae(Hymenoptera: Dryinidae) as a biological control agent of Metcalfa pruinosa (미국선녀벌레 천적인 선녀벌레집게벌 대량사육 체계)

  • Meeja Seo;Jeong Hwan Kim;Hyeon Jung Noh;Bo Yoon Seo;Jum Rae Cho;Hong Hyun Park
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.423-432
    • /
    • 2022
  • The mass-rearing system for Neodryinus typhlocybae as a biological control agent of Metcalfa pruinosa was established. Depending on the density of host nymphs and plants, the average number of cocoons produced by the parasitoids was 5-8 and 70-150 cocoons per leaf and sapling of mulberry, respectively. There is a significant difference in cocoon length between females (6.10-6.46mm) and males (4.20-4.62mm). Sex determination of cocoons before emergence will be helpful for efficiently releasing this parasitoid in fields. The parasitic rate of N. typhlocybae at the semi-field condition was on average 13-17%. The release number of this parasitoid did not affect parasitism. Nevertheless, the population growth rate of M. pruinosa was reduced by increasing the release number of N. typhlocybae. The parasitoid offspring's sex and bivoltine were influenced by the host age. On young host nymphs, the bivoltine portion of parasitoid increased. When parasitized on 4th or 5th nymphs, the offspring's female ratio of N. typhlocybae increased. This result may be useful for potentially controlling mass rearing production of parasitoid.

The Verification Of Green Soil Material Characteristics For Slope Protection (사면 보호를 위한 녹생토 재료 특성 검증)

  • Lee, Byung-Jae;Heo, Hyung-Seok;Noh, Jae-Ho;Jang, Young-Il
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.681-692
    • /
    • 2017
  • In recent years, large-scale construction projects such as road pavement construction and new city construction have been carried out nationwide with by the expansion of social overhead facilities and base on the economic development planning, resulting in a rapid increase in artificial slope damage. The existing vegetation-based re-installation method of the slope surface greening method reveals various problems such as lack of bonding force, drying, and lack of organic matter. In this study, research was carried out using vegetation-based material and environmentally friendly soil additives, were are used in combination with natural humus, Bark compost, coco peat, and vermiculite. Uniaxial compressive strength was measured according to the mixing ratio of soil additives and the strength was analyzed. Experiments were carried out on the characteristics of the soil material to gauge the slope protection properties by using the soil compaction test method wherein the soil and the soil additive materials are mixed in relation to the soil height, the number of compaction, the compaction method (layer) and the curing condition. As a result of the experiment, excellent strength performance was demonstrated in soil additives using gypsum cement, and it satisfied vegetation growth standards by using performance enhancer and pH regulator. It was confirmed that the strength increases with the mixing of soil and soil additive, and the stability of slope protection can be improved.

Sea Ice Drift Tracking from SAR Images and GPS Tracker (SAR 영상과 GPS 추적기를 이용한 여름철 해빙 이동 궤적 추적)

  • Jeong-Won Park;Hyun-Cheol Kim;Minji Seo;Ji-Eun Park;Jinku Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.257-268
    • /
    • 2023
  • Sea ice plays an important role in Earth's climate by regulating the amount of solar energy absorbed and controlling the exchange of heat and material across the air-sea interface. Its growth, drift, and melting are monitored on a regular basis by satellite observations. However, low-resolution products with passive microwave radiometer have reduced accuracy during summer to autumn when the ice surface changes rapidly. Synthetic aperture radar (SAR) observations are emerging as a powerful complementary, but previous researches have mainly focused on winter ice. In this study, sea ice drift tracking was evaluated and analyzed using SAR images and tracker with global positioning system (GPS) during late summer-early autumn period when ice surface condition changes a lot. The results showed that observational uncertainty increases compared to winter period, however, the correlation coefficient with GPS measurements was excellent at 0.98, and the performance of the ice tracking algorithm was proportional to the sea ice concentration with a correlation coefficient of 0.59 for ice concentrations above 50%.

The characteristics of aqueous ammonium-adsorption of biochar produced from Sudangrass (수단그라스 Biochar를 적용한 수중 암모니아성 질소(NH4-N) 흡착 특성)

  • Doyoon Ryu;Do-Yong Kim;Daegi Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2023
  • Increased nitrogen in the water system has become an important environmental problem around the world, as it causes eutrophication, algae bloom, and red tide, destroys the water system, and undermines water's self-purification. The most common form of nitrogen in the water system is ammonium ion (NH4+), and the largest portion of ammonium ions comes from wastewater. NH4+ is a major contributor to eutrophication, which calls for appropriate treatment and measures for ammonium removal. This study produced biochar by applying Sorghum × drummondii, a type of biomass with a great growth profile, analyzed the adsorption capacity of Sorghum × drummondii biochar produced from the changing carbonization temperature condition of 200 to 400℃ in the ammonium ion range of 10 to 100 ppm, and used the results to evaluate its potential as an adsorbent. Carbonization decomposed the chemical structure of Sorghum × drummondii and increased the content of carbon and fixed carbon in the biochar. The biochar's pH and electrical conductivity showed high adsorption potential for cations due to electrical conductivity as its pH and electrical conductivity increased along with higher carbonization temperature. Based on the results of an adsorption experiment, the biochar showed 54.5% and 17.4% in the maximum and minimum NH4-N removal efficiency as the concentration of NH4-N increased, and higher carbonization temperature facilitated the adsorption of pollutants due to the biochar's increased pores and specific surface area and subsequently improved NH4-N removal efficiency. FT-IR analysis showed that the overall surface functional groups decreased due to high temperature from carbonization.

A Meshless Method Using the Local Partition of Unity for Modeling of Cohesive Cracks (점성균열 모델을 위한 국부단위분할이 적용된 무요소법)

  • Zi, Goangseup;Jung, Jin-kyu;Kim, Byeong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.861-872
    • /
    • 2006
  • The element free Galerkin method is extended by the local partition of unity method to model the cohesive cracks in two dimensional continuum. The shape function of a particle whose domain of influence is completely cut by a crack is enriched by the step enrichment function. If the domain of influence contains a crack tip inside, it is enriched by a branch enrichment function which does not have the LEFM stress singularity. The discrete equations are obtained directly from the standard Galerkin method since the enrichment is only for the displacement field, which satisfies the local partition of unity. Because only particles whose domains of influence are influenced by a crack are enriched, the system matrix is still sparse so that the increase of the computational cost is minimized. The condition for crack growth in dynamic problems is obtained from the material instability; when the acoustic tensor loses the positive definiteness, a cohesive crack is inserted to the point so as to change the continuum to a discontiuum. The crack speed is naturally obtained from the criterion. It is found that this method is more accurate and converges faster than the classical meshless methods which are based on the visibility concept. In this paper, several well-known static and dynamic problems were solved to verify the method.

A Study on the Improvement Methods for Hybrid Sorghum Seeds Production

  • Ji-Young Kim;Sang-ik Han;Seok-bo Song;Byeong-won Lee;Ji-ho Chu;Young-kwang Ju;Chung Song Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.205-205
    • /
    • 2022
  • Sorghum (Sorghum bicolor L.) is a major cereal grain crop of the world and It can be cultivated under high temperature and dry condition with high adaptability to the adverse environment. It is usually eaten with rice in korea and most of domestic sorghum cultivars have been developed by pure line selection and cross breeding. In prior studies, Hybrid cultivar (F1 seed) was known to improve 30-40% in yield and resist to disease and pest than pure line varieties due to hybrid vigor. Therefore, study on the hybrid sorghum is continuously necessary. In korea, hybrid sorghum cultivar have been developed, so we need to find methods seed production technology for supply and commercialization of hybrid seed cultivar. Female inbred line(A-line) and male inbred line(R-line) are needed for hybrid seed production. This study was carried out to investigate growth characteristics and yield of hybrid sorghum according to the seedling period and planting rate between female inbred line(YSA1) and male inbred line (Sodamchal, Miryang 19). When the flowering period of two inbred groups in the process of hybrid seed production is coincides, hybrid seed production is increase. The female inbred line and male inbred lines were cultivated at Daegu in 2021. Two inbred lines were sown at intervals of 3 days and 7days and were evaluated flowering period. As a result, the flowering period of the female inbred line and male inbred lines were matched at the 7days interval. To find out optimal planting rate, two inbred lines were cultivated under different plating rate (4:2, 5:2, 6:2). Yield of YSA1/Sodamchal(F1) was the highest 130(kg/10a) in the 4:2 ratio and yield of YSA1/Miryang 19 was the highest quantity of 139(kg/10a) in the 6:2 ratio. The results of this study could be helpful for hybrid Sorghum seeds production.

  • PDF

QTL Identification for Slow Wilting and High Moisture Contents in Soybean (Glycine max [L.]) and Arduino-Based High-Throughput Phenotyping for Drought Tolerance

  • Hakyung Kwon;Jae Ah Choi;Moon Young Kim;Suk-Ha Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.25-25
    • /
    • 2022
  • Drought becomes frequent and severe because of continuous global warming, leading to a significant loss of crop yield. In soybean (Glycine max [L.]), most of quantitative trait loci (QTLs) analyses for drought tolerance have conducted by investigating yield changes under water-restricted conditions at the reproductive stages. More recently, the necessity of QTL studies to use physiological indices responding to drought at the early growth stages besides the reproductive ones has arisen due to the unpredictable and prevalent occurrence of drought throughout the soybean growing season. In this study, we thus identified QTLs conferring wilting scores and moisture contents of soybean subjected to drought stress in the early vegetative stage using an recombinant inbred line (RIL) population derived from a cross between Taekwang (drought-sensitive) and SS2-2 (drought-tolerant). For the two traits, the same major QTL was located on chromosome 10, accounting for up to 11.5% of phenotypic variance explained with LOD score of 12.5. This QTL overlaps with a reported QTL for the limited transpiration trait in soybean and harbors an ortholog of the Arabidopsis ABA and drought-induced RING-D UF1117 gene. Meanwhile, one of important features of plant drought tolerance is their ability to limit transpiration rates under high vapor pressure deficiency in response to mitigate water loss. However, monitoring their transpiration rates is time-consuming and laborious. Therefore, only a few population-level studies regarding transpiration rates under the drought condition have been reported so far. Via employing an Arduino-based platform, for the reasons addressed, we are measuring and recording total pot weights of soybean plants every hour from the 1st day after water restriction to the days when the half of the RILs exhibited permanent tissue damage in at least one trifoliate. Gradual decrease in moisture of soil in pots as time passes refers increase in the severity of drought stress. By tracking changes in the total pot weights of soybean plants, we will infer transpiration rates of the mapping parents and their RILs according to different levels of VPD and drought stress. The profile of transpiration rates from different levels of severity in the stresses facilitates a better understanding of relationship between transpiration-related features, such as limited maximum transpiration rates, to water saving performances, as well as those to other drought-responsive phenotypes. Our findings will provide primary insights on drought tolerance mechanisms in soybean and useful resources for improvement of soybean varieties tolerant to drought stress.

  • PDF