• Title/Summary/Keyword: Growing substrate

Search Result 239, Processing Time 0.031 seconds

Environmental impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farming system (비순환식 양액재배에서 발생하는 폐양액, 폐배지, 폐작물이 환경에 미치는 영향)

  • Park, Bounglog;Cho, Hongmok;Kim, Minsang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2021
  • Hydroponic farming is a method to grow a plant without soil. Plants can be grown on water or hydroponic growing media, and they are fed with mineral nutrient solutions, which are fertilizers dissolved into water. Hydroponic farming has the advantage of increasing plant productivity over conventional greenhouse farming. Previous studies of hydroponic nutrient wastewater from acyclic hydroponic farms pointed out that hydroponic nutrient wastewater contained residual nutrients, and they were drained to a nearby river bank which causes several environmental issues. Also, previous studies suggest that excessive use of the nutrient solution and disposal of used hydroponic growing media and crop wastes in hydroponic farms are major problems to hydroponic farming. This study was conducted to determine the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment by analyzing water quality and soil analysis of the above three factors. Three soil cultivation farms and several hydroponic farms in the Gangwon C region were selected for this study. Samples of water and soils were collected from both inside and outside of each farm. Also, a sample of soil and leachate from crop waste piles stacked near the farm was collected for analysis. Hydroponic nutrient wastewater from acyclic hydroponic farm contained an average of 402 mg/L of total nitrogen (TN) concentration, and 77.4 mg/L of total phosphate (TP) concentration. The result of TP in hydroponic nutrient wastewater exceeds the living environmental standard of the river in enforcement decree of the framework act on environmental policy by 993.7 times. Also, it exceeds the standard of industrial wastewater discharge standards under the water environment conservation act by 6~19 times in TN, and 2~27 times in TP. Leachate from crop waste piles contained 11,828 times higher COD and 395~2662 times higher TP than the standard set by the living environmental standard of the river in enforcement decree of the framework act on environmental policy and exceeds 778 times higher TN and 5 times higher TP than the standard of industrial wastewater discharge standards under the water environment conservation act. For more precise studies of the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment, additional information regarding a number of hydroponic farms, arable area(ha), hydroponic farming area, seasonal, weather, climate factor around the river, and the property of the area and farm is needed. Analysis of these factors and additional water and soil samples are needed for future studies.

Effect of Molasses or Rice Gruel Inclusion to Urea Supplemented Rice Straw on Its Intake, Nutrient Digestibilities, Microbial N Yield, N Balance and Growth Rate of Native (Bas indicus) Growing Bulls

  • Chowdhury, S.A.;Huque, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.2
    • /
    • pp.145-151
    • /
    • 1998
  • The possibility of using rice gruel compared to that of the cane molasses as a source of readily fermentable energy for a urea supplemented straw diet has been studied. Twelve native growing bulls of $237{\pm}8.7kg $ live weight and months old were randomly allocated to three treatments fed solely rice straw enriched with : (1) 3% urea (US), (2) 3% urea + 15% molasses (UMS) and (3) 3% urea + 30% rice gruel (UGS). The feeding trial continued for sixty days. Organic matter (OM) intake was significantly (p < 0.05) higher in the UMS ( $64g/kg\;W^{0.75}/d$) followed by UGS ($53g/kg\;W^{0.75}/d$) and US ($49g/kg\;W^{0.75}/d$). Estimated (from digestible OM intake) metabolizable energy (ME) intake were 396, 348 and $301kJ/kg\;W^{0.75}/d$ for UMS, UGS and US respectively. The maintenance (i.e., no change in live weight) ME intake calculated to be $308{\pm}7.4kJ/kg\;W^{0.75}/d$. Urinary purine derivatives excretion was nonsignificantly higher in the UMS (51.73 mmol/d), followed by UGS (42.53 mmol/d) and US (35.26 mmol/d). The estimated microbial N (MN) yield were 21.10, 14.00 and 11.60 g/d for UMS, UGS and US respectively. For each MJ increase in ME intade, MN yield increased by $1.29{\pm}0.134g$. Observed live weight changes during the experimental period were 292, 125 and -19 g/d respectively for UMS, UGS and US. It was concluded that supplementation of readily fermentable N (urea) alone was not enough to optimize the rumen function and a source of readily fermentable energy was required. Rice gruel was less effective than molasses as fermentable energy source to remove a restriction on voluntary intake and provide less amino acids of microbial origin for absorption from the small intestine, Thus more substrate for protein synthesis and gluconeogenesis were available for growth in the molasses than the rice gruel supplemented animals. However, in situation where molasses is not available or costly, rice gruel does appear to have a place as readily fermentable energy source on a urea supplemented straw diet.

Novel synthesis of nanocrystalline thin films by design and control of deposition energy and plasma

  • Han, Jeon G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.77-77
    • /
    • 2016
  • Thin films synthesized by plasma processes have been widely applied in a variety of industrial sectors. The structure control of thin film is one of prime factor in most of these applications. It is well known that the structure of this film is closely associated with plasma parameters and species of plasma which are electrons, ions, radical and neutrals in plasma processes. However the precise control of structure by plasma process is still limited due to inherent complexity, reproducibility and control problems in practical implementation of plasma processing. Therefore the study on the fundamental physical properties that govern the plasmas becomes more crucial for molecular scale control of film structure and corresponding properties for new generation nano scale film materials development and application. The thin films are formed through nucleation and growth stages during thin film depostion. Such stages involve adsorption, surface diffusion, chemical binding and other atomic processes at surfaces. This requires identification, determination and quantification of the surface activity of the species in the plasma. Specifically, the ions and neutrals have kinetic energies ranging from ~ thermal up to tens of eV, which are generated by electron impact of the polyatomic precursor, gas phase reaction, and interactions with the substrate and reactor walls. The present work highlights these aspects for the controlled and low-temperature plasma enhanced chemical vapour disposition (PECVD) of Si-based films like crystalline Si (c-Si), Si-quantum dot, and sputtered crystalline C by the design and control of radicals, plasmas and the deposition energy. Additionally, there is growing demand on the low-temperature deposition process with low hydrogen content by PECVD. The deposition temperature can be reduced significantly by utilizing alternative plasma concepts to lower the reaction activation energy. Evolution in this area continues and has recently produced solutions by increasing the plasma excitation frequency from radio frequency to ultra high frequency (UHF) and in the range of microwave. In this sense, the necessity of dedicated experimental studies, diagnostics and computer modelling of process plasmas to quantify the effect of the unique chemistry and structure of the growing film by radical and plasma control is realized. Different low-temperature PECVD processes using RF, UHF, and RF/UHF hybrid plasmas along with magnetron sputtering plasmas are investigated using numerous diagnostics and film analysis tools. The broad outlook of this work also outlines some of the 'Grand Scientific Challenges' to which significant contributions from plasma nanoscience-related research can be foreseen.

  • PDF

Determination of Water Retention Characteristics of Organic and Inorganic Substrates for Horticulture by European Standard Method (유럽표준배지분석법에 의한 원예용 유기·무기성 배지의 수분보유특성)

  • Kang, Ji-Young;Park, Soon-Nam;Lee, Hyun-Haeng;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.55-58
    • /
    • 2004
  • The objective of this study was to get information about water retention characteristics of horticultural substrates used in Korea determined by European standard method. Water retention curves were prepared at water volume (v/v, %) in relation to -10 cm, -50 cm, -100 cm water pressure head. Water retention curves showed different properties depending upon the type, the place of origin, particle size, and manufacturing processes of substrates. Peat and coir had easily available water content in the range of 30-40% and showed high water holding capacity, water buffering capacity, and aeration for plant growth. However, bark, sawdust and rice hull showed low water holding capacity about below 10%. The easily available water content of perlite and clay ball was low about 0.1-13.8%, whereas that of vermiculite and rockwool granulate was high about 25.9-52.0%. Understanding water retention characteristics of growing substrates is very important in cstablisliing optimum condition for plant growth. Further study on water retention curves for more substrates, mixture and growing media is needed.

Study on the Genetic Diversity and Biological Characteristics of Wild Agaricus bisporus Strains from China

  • Wang, Zesheng;Liao, Jianhua;Chen, Meiyuan;Wang, Bo;Li, Hongrong;Lu, Zhenghui;Guo, Zhongjie
    • 한국균학회소식:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.3-13
    • /
    • 2009
  • 90 wild Agaricus strains from China, including 44 Agaricus bisporus strains identified preliminarily by isozyme electrophoresis, were studied by the techniques of SRAP and ISSR. 18 special SRAP bands and 12 special ISSR bands were analyzed, the strains were clustered and a demdrogram was obtained. The results showed that the strains were divided into 2 groups, wild A. bisporus group and the other Agaricus group. It is similar to the result of isozyme electrophoresis. 41 wild A. bisporus strains from Sichuan and Tibet were divided into 4 groups based on their growing places, suggesting the regionally difference of the strains to be quite obvious. Some white wild A. bisporus strains from Xinjiang and Tibet had special patterns, resulting in lower coefficient values with other wild A. bisporus strains. The biological characteristics of three wild A. bisporus strains were analyzed, and the results showed: 1. The wild strains grew slowly on PDA medium with weak appressed mycelia, and grew normally in kernel or fermented cottonseed shell substrate. 2. They grew faster than control strain As2796 under lower temperature of $16^{\circ}C$, and higher temperature of $32^{\circ}C$, with optimum growing temperature of $20-24^{\circ}C$, which was $4^{\circ}C$ lower than that of control strain. 3. In the cultivation with manure compost via twice fermentation, the mycelia grew normally in compost and quite slowly in casing soil, and the fruitbodies occurred less and late with easily opening and low production. 4. The fruitbody was off-white with flat and scaled cap, long stipe and dark gill. The bisporus basidia occupied 70-80% and trisporus basidia 20-30% of the total basidia. 5. Heterokaryotic monospore isolates could fruit in cultivation, and the homokaryotic isolates could cross with those derived from overseas wild A.bisporus strains. 6. The electrophoresis phenotype of isozymes such as esterase etc. belonged to high production type (H type). 7. The RAPD patterns made much difference from those of high production, good quality or hybrid strains, which indicated that the wild strains produce a new kind of RAPD type.

  • PDF

Adjusting moisture contents of the substrates on the mushroom bottle cultivation by the device Load cell (로드셀을 장치한 버섯 병재배용 배지의 수분조절 방법)

  • Cheong, Jong-Chun;Lee, Chan-Jung;Moon, Ji-Won;Kweon, Jae-Gun;Kim, Hyuck-joo
    • Journal of Mushroom
    • /
    • v.13 no.3
    • /
    • pp.233-236
    • /
    • 2015
  • This report is the result of devising a method for utilizing the device of the load cell to maintain a constant water content of the medium every day to prepare a cultural substrates with the mixer for growing mushrooms bottle cultivation. A load cell was device under the medium mixer. It is developed when the device reaches the weight calculated as amount of substrate bottled and number of the bottle, it is automatically terminated by water injection. In addition, measuring the water content of each medium and the total weight of the medium reaches the target moisture content were calculated by using the program Cheong et al. (2015). Enter the total weight of the medium on the display unit of the load cell, when starting the water supply to reach the weight-based mixing media, the water supply is stopped. This method can improve the convenience by reducing the user's trouble in repeated work medium prepared by automating water supply. The suitable moisture content of the mixed medium for some kind of mushroom can be improved by the composition accuracy. And mycelial culture period, primordial period, mushroom growing period is maintained even of the medium can be produced stably. Therefore, it is possible to achieve a stable management of the mushroom farm according to mushroom quality and quantity stable throughout the year.

Effect of Feeding a By-product Feeds-based Silage (Biosilage®) on Behavior Pattern of Growing Hanwoo Steers (부산물사료 주원료 사일리지(Biosilage®) 급여가 거세 육성 한우의 행동양식에 미치는 영향)

  • Kim, Young Il;Lee, Sang Moo;Park, Keun Kyu;Kwak, Wan Sup
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.4
    • /
    • pp.290-297
    • /
    • 2013
  • This study was carried out to investigate the effects of a by-product feed-based silage (BF silage) feeding on behavior patterns of growing Hanwoo steers. A total of 10 Hanwoo steers (11 months old, 302kg of body weight) were assigned to 2 dietary treatments: the control (concentrate mix + free access to rice straw), and the treatment (concentrate mix + free access to BF silage). The behavior patterns were observed for 48 hours. The intakes of dry matter (DM) and neutral detergent fiber (NDF) of the treatment group were higher than those of the control group. Eating time, ruminating time and resting time were not different between the control and treatment. But, the intake time per kg DM was higher for the control than treatment. The number of bolus, total chewing frequency, number of ruminating per bolus and number of bolus per minute were not different between the control and treatment. But the chewing frequency per bolus was higher in the treatment than control (p<0.05), and feed value index was lower in treatment than control (p<0.05). Frequencies of drinking and defecating were not different between the two groups, but the frequency of urinating was higher for the treatment (p<0.05) than control. Eating rate, ruminating efficiency and chewing efficiency were much higher in the treatment group than control (p<0.05). These results indicate that the replacement of conventional rice straws with the BF silage (physically effective NDF, about 25%) did not affect the ruminating behaviors of Hanwoo steers significantly.

“Aluminium Nitride Technology-a review of problems and potential"

  • Dryburgh, Peter M.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.75-87
    • /
    • 1996
  • This review is presented under the following headings: 1.Introduction 1.1 Brief review of the properties of AlN 1.2 Historical survey of work on ceramic and single crystal AlN 2.Thermochemical background 3.Crystal growth 4.Doping 5.Potential applications and future work The known properties of AlN which make it of interest for various are discussed briefly. The properties include chemical stability, crystal structure and lattice constants, refractive indices and other optical properties, dielectric constant, surface acoustic wave velocity and thermal conductivity. The history of work in single crystals, thin films and ceramics are outlined and the thermochemistry of AlN reviewed together with some of the relevant properties of aluminium and nitrogen; the problems encountered in growing crystals of AlN are shown to arise directly from these thermochemical relationships. Methods have been reported in the literature for growing AlN crystals from melts, solution and vapour and these methods are compared critically. It is proposed that the only practicable approach to the growth of AlN is by vapour phase methods. All vapour based procedures share the share the same problems: $.$the difficulty of preventing contamination by oxygen & carbon $.$the high bond energy of molecular nitrogen $.$the refractory nature of AlN (melting point~3073K at 100ats.) $.$the high reactivity of Al at high temperatures It is shown that the growth of epitactic layers and polycrystalline layers present additional problems: $.$chemical incompatibility of substrates $.$crystallographic mismatch of substrates $.$thermal mismatch of substrates The result of all these problems is that there is no good substrate material for the growth of AlN layers. Organometallic precursors which contain an Al-N bond have been used recently to deposit AlN layers but organometallic precursors gave the disadvantage of giving significant carbon contamination. Organometallic precursors which contain an Al-N bound have been used recently to deposit AlN layers but organometallic precursors have the disadvantage of giving significant carbon contamination. It is conclude that progress in the application of AlN to optical and electronic devices will be made only if considerable effort is devoted to the growth of larges, pure (and particularly, oxygen-free) crystals. Progress in applications of epi-layers and ceramic AlN would almost certainly be assisted also by the availability of more reliable data on the pure material. The essential features of any stategy for the growth of AlN from the vapour are outlined and discussed.

  • PDF

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF

Development of Nutrient Solution Suitable for Closed System in Substrate Culture of Cucumber (오이 순환식 고형배지경에 적합한 배양액 개발)

  • 노미영;이용범;김회상;이경복;배종향
    • Journal of Bio-Environment Control
    • /
    • v.6 no.1
    • /
    • pp.1-14
    • /
    • 1997
  • This experiment was conducted to find out the compositions of nutrient solution for closed system in substrate culture of cucumber. Cucumber(Cucumis sativus L. cv. Eunsung baekdadagi) plants were grown in the substrates supplied with the nutrient solutions whose strengths were 1/2, 1, and 3/2 of the original concentration developed by National Horticultural Research Station in Japan. By increasing the nutrient concentrations, plant height decreased but leaf length, leaf width, and leaf number showed little differences. A number of marketable fruit and marketable yield were the highest in the concentration of 1 strength. The nutrient compositions of solution developed for closed system in cucumber substrate culture were N 11.4, P 3.3, K 6.0, Ca 4.5, and Mg 3.5 me.$\ell$$^{-1}$ during the vegetative growth period and N 10.4, P 3.3, K 5.0, Ca 4.5, and Mg 3,5 me.$\ell$$^{-1}$ during the reproductive growth period. To examine the suitability of nutrient solution developed in the above experiment, cucumber plants were grown in the substrates supplied with different solutions and concentrations - Yamasaki's nutrient solution(Yamasaki) of 1 S, nutrient solution of Research Station for Greenhouse Vegetable and Floriculture on the Netherlands(PTG) of 1 S, nutrient solution developed in the above experiment(SCU) of 1/2, 1, and 3/2 S. EC and pH in root zone changed little in the all treatments during growing period. As cucumber plants grew, the concentrations of N, P, and K in root zone decreased but Ca concentration increased. Net $CO_2$ assimilation rate of cucumber leaves was high in SCU of 1 and 3/2 S, and Yamasaki of 1 S. Growth of cucumber plants was the lowest in SCU of 1/2 S.

  • PDF