• Title/Summary/Keyword: Group-sparsity recovery

Search Result 3, Processing Time 0.017 seconds

Smoothed Group-Sparsity Iterative Hard Thresholding Recovery for Compressive Sensing of Color Image (컬러 영상의 압축센싱을 위한 평활 그룹-희소성 기반 반복적 경성 임계 복원)

  • Nguyen, Viet Anh;Dinh, Khanh Quoc;Van Trinh, Chien;Park, Younghyeon;Jeon, Byeungwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.173-180
    • /
    • 2014
  • Compressive sensing is a new signal acquisition paradigm that enables sparse/compressible signal to be sampled under the Nyquist-rate. To fully benefit from its much simplified acquisition process, huge efforts have been made on improving the performance of compressive sensing recovery. However, concerning color images, compressive sensing recovery lacks in addressing image characteristics like energy distribution or human visual system. In order to overcome the problem, this paper proposes a new group-sparsity hard thresholding process by preserving some RGB-grouped coefficients important in both terms of energy and perceptual sensitivity. Moreover, a smoothed group-sparsity iterative hard thresholding algorithm for compressive sensing of color images is proposed by incorporating a frame-based filter with group-sparsity hard thresholding process. In this way, our proposed method not only pursues sparsity of image in transform domain but also pursues smoothness of image in spatial domain. Experimental results show average PSNR gains up to 2.7dB over the state-of-the-art group-sparsity smoothed recovery method.

Visually Weighted Group-Sparsity Recovery for Compressed Sensing of Color Images with Edge-Preserving Filter (컬러 영상의 압축 센싱을 위한 경계보존 필터 및 시각적 가중치 적용 기반 그룹-희소성 복원)

  • Nguyen, Viet Anh;Trinh, Chien Van;Park, Younghyeon;Jeon, Byeungwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.106-113
    • /
    • 2015
  • This paper integrates human visual system (HVS) characteristics into compressed sensing recovery of color images. The proposed visual weighting of each color channel in group-sparsity minimization not only pursues sparsity level of image but also reflects HVS characteristics well. Additionally, an edge-preserving filter is embedded in the scheme to remove noise while preserving edges of image so that quality of reconstructed image is further enhanced. Experimental results show that the average PSNR of the proposed method is 0.56 ~ 4dB higher than that of the state-of-the art group-sparsity minimization method. These results prove the excellence of the proposed method in both terms of objective and subjective qualities.

Accelerated Split Bregman Method for Image Compressive Sensing Recovery under Sparse Representation

  • Gao, Bin;Lan, Peng;Chen, Xiaoming;Zhang, Li;Sun, Fenggang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2748-2766
    • /
    • 2016
  • Compared with traditional patch-based sparse representation, recent studies have concluded that group-based sparse representation (GSR) can simultaneously enforce the intrinsic local sparsity and nonlocal self-similarity of images within a unified framework. This article investigates an accelerated split Bregman method (SBM) that is based on GSR which exploits image compressive sensing (CS). The computational efficiency of accelerated SBM for the measurement matrix of a partial Fourier matrix can be further improved by the introduction of a fast Fourier transform (FFT) to derive the enhanced algorithm. In addition, we provide convergence analysis for the proposed method. Experimental results demonstrate that accelerated SBM is potentially faster than some existing image CS reconstruction methods.