DOI QR코드

DOI QR Code

Visually Weighted Group-Sparsity Recovery for Compressed Sensing of Color Images with Edge-Preserving Filter

컬러 영상의 압축 센싱을 위한 경계보존 필터 및 시각적 가중치 적용 기반 그룹-희소성 복원

  • Nguyen, Viet Anh (Sungkyunkwan University, College of Information & Communication Engineering) ;
  • Trinh, Chien Van (Sungkyunkwan University, College of Information & Communication Engineering) ;
  • Park, Younghyeon (Sungkyunkwan University, College of Information & Communication Engineering) ;
  • Jeon, Byeungwoo (Sungkyunkwan University, College of Information & Communication Engineering)
  • ;
  • ;
  • 박영현 (성균관대학교 정보통신대학) ;
  • 전병우 (성균관대학교 정보통신대학)
  • Received : 2015.06.13
  • Accepted : 2015.09.03
  • Published : 2015.09.25

Abstract

This paper integrates human visual system (HVS) characteristics into compressed sensing recovery of color images. The proposed visual weighting of each color channel in group-sparsity minimization not only pursues sparsity level of image but also reflects HVS characteristics well. Additionally, an edge-preserving filter is embedded in the scheme to remove noise while preserving edges of image so that quality of reconstructed image is further enhanced. Experimental results show that the average PSNR of the proposed method is 0.56 ~ 4dB higher than that of the state-of-the art group-sparsity minimization method. These results prove the excellence of the proposed method in both terms of objective and subjective qualities.

본 논문에서는 컬러 영상의 압축 센싱 복원 기술에 인지시각시스템의 특성을 접목해 복원 영상의 화질을 향상 시키는 방법을 연구하였다. 제안하는 그룹-희소성 최소화 기반 컬러 채널별 시각적 가중치 적용 방법은 영상의 성긴 특성뿐만 아니라 인지시각시스템의 특성을 반영할 수 있도록 설계되었다. 또한, 복원 영상에서의 잡음을 제거하기 위하여 설계한 경계보존 필터는 영상의 경계 부분에 대한 디테일을 보존함으로써, 복원 영상의 품질을 향상 시키는 역할을 한다. 실험 결과, 제안하는 방법이 최신의 그룹-희소성 최소화 기반 방법들보다 평균 0.56 ~ 4dB 더 높은 PSNR을 달성함으로써, 객관적 성능을 향상시킬 수 있음을 확인하였으며, 주관적 화질 또한 기존 방법들에 비해 뛰어나다는 것을 복원된 영상 간 비교를 통해 확인하였다.

Keywords

References

  1. D. L. Donoho, "Compressive sensing," IEEE Trans. Inform. Theory, vol. 52, pp. 1289-1306, 2006. https://doi.org/10.1109/TIT.2006.871582
  2. S. Park, H. N. Lee, S. Park, "Introduction to Compressed Sensing," The Magazine of the IEEK, vol. 38, pp. 19-30, 2011.
  3. H. Lee, S. Kwon, B. Shim, "Reweighted L1-Minimization via Support Detection," Journal of the Institute of Electronics Engineers of Korea, Vol. 48, no. 2, pp. 134-140, Mar. 2011.
  4. A. Majumdar and R. K. Ward, "Compressed sensing of color images," Jour. Signal Process., vol. 90, pp. 3122-3127, 2010 https://doi.org/10.1016/j.sigpro.2010.05.016
  5. P. Nagesh and B. Li, "Compressive imaging of color images," Proc. of IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), pp. 1261-1264, 2009.
  6. V. A. Nguyen, K. Q. Dinh, C. V. Trinh, and B. Jeon, "Smoothed group-sparsity iterative hard thresholding recovery for compressive sensing of color image," Journal of the Institute of Electronics and Information Engineers, vol. 51, pp. 849-856, 2014.
  7. C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," Proc. of Int. Conf. Computer Vision, pp. 839-846, 1998.
  8. E. Candes and J. Romberg, "Sparsity and incoherence in compressive sampling," Inverse Prob., vol. 23, pp. 969-985, 2007. https://doi.org/10.1088/0266-5611/23/3/008
  9. Mohimani, M. Babaie-Zadeh, C. Jutten, "A fast approach for overcomplete sparse decomposition based on smoothed l0norm," IEEE Trans. Signal Process., vol. 57, pp. 289-301, 2009. https://doi.org/10.1109/TSP.2008.2007606
  10. A. Nguyen, K. Q. Dinh, C. V. Trinh, and B. Jeon, "HVS based iterative hard thresholding recovery for compressive sensed image," Proc. of IEEE Int. Conf. Systems, Signal and Image Process. (IWSSIP), 2014.
  11. A. Peterson, H. Peng, J. H. Morgan, and W. B. Pennebaker, "Quantization of color image components in the DCT domain," Proc. SPIE, Human Vision, Visual Process., vol. 1453, pp. 210-222, 1991.
  12. L.Zang, D. Zang, X. Mou, D. Zang, "FSIM: A feature similarity index for image quality assessment," IEEE Trans. Image Process., vol. 20, pp. 2378-2386, 2011. https://doi.org/10.1109/TIP.2011.2109730
  13. H. T. Kung and S. J. Tarsa, "Partitioned compressive sensing with neighbor-weighted decoding," Proc. of Int. Conf. Military Comm. (MILCOM), pp. 149-156, 2011.
  14. K. Q. Dinh, H. Shim, and B. Jeon, "Deblocking filter for artifact reduction in distributed compressed video sensing," Proc. of Visual Comm. Image Process. (VCIP), pp. 1-5, 2012.