In this article we first investigate a sort of unit-IFP ring by which Antoine provides very useful information to ring theory in relation with the structure of coefficients of zero-dividing polynomials. Here we are concerned with the whole shape of units and nilpotent elements in such rings. Next we study the properties of unit-IFP rings through group actions of units on nonzero nilpotent elements. We prove that if R is a unit-IFP ring such that there are finite number of orbits under the left (resp., right) action of units on nonzero nilpotent elements, then R satisfies the descending chain condition for nil left (resp., right) ideals of R and the upper nilradical of R is nilpotent.
In usual safety signs are final means to transmit hazard information so that the importance of them cannot be emphasized too much. Nevertheless, in Korea, few people are interested in functions of safety signs so that evaluation of safety signs are seldom committed. This research was conducted to evaluate and compare perceptional characteristics of safety signs, especially "Fall" signs, by Semantic Differential Method and Multi-dimensional Scaling Method, with undergraduate students as well as industrial workers. According to research results on several signs evaluated high through suggested procedure, action inducibility was different for students majoring in different sciences, but it had common elements in the sense of 'openness' or 'arrangements'. Besides, perceptional images on safety signs were mainly recognized with bases of 'arrangement' for student group and 'simplicity' for industrial workers, respectively, and their maps corresponded well with each other by partial rotating so that students and workers seemed to recognize safety signs with similar factors though their name might be different. However, since perceptional characteristics including image map, comprehensibility, and action inducibility were similar for student group whereas those were not for worker group, it was concluded that the test for action inducibility would be absolutely necessary for safety signs for workers' group.
An ultrasound probe has a big impact on Doppler images even though it has very high risk of frequent function-breakdowns occurring in medical ultrasound scanners. This study experimentally analyses the impacts of an ultrasonic probe's defected elements on power & color Doppler images. The results show that, the bigger the size of defected probe elements is, and the closer a group of action elements is to the center, the more the brightness of images and the velocity of Doppler diminish. When elements' defects increase in color & power Doppler images, false images are formed to be mistaken for blood-vessel plaque in neighboring regions. Accordingly, whenever element defects are suspected, we need check-up process in B-mode. From this respective, it is advisable to have primary interest in a probe and carry out continuous probe QA for ultrasonography.
Considering a special double-cover Q of the symmetric group of degree 3, we show that a proper non-regular approximate symmetry occurs from its quasigroup homogeneous space. The weak compatibility of any two elements of Q is completely characterized in any such quasigroup homogeneous space of degree 4.
The purpose of this paper is to show that a certain finite dimensional representation of the rational Cherednik algebra of type A has a basis consisting of simultaneous eigenvectors for the actions of a certain family of commuting elements, which are introduced in the author's previous paper. To this end, we introduce a combinatorial object, which is called a restricted arrangement of colored beads, and consider an action of the affine symmetric group on the set of the arrangements.
We consider quasigroups $Q({\Gamma})$ obtained as certain double covers of the symmetric group $S_3$ of degree 3, for directed graphs ${\Gamma}$ on the vertex set $S_3$. We completely characterize the strong compatibility of elements of $Q({\Gamma})$ for any quasigroup nonuniform homogeneous space of degree 4. For such homogeneous spaces, we classify all the strong and weak compatibility graphs of $Q({\Gamma})$.
A point of a Riemann surface X is said to be its fixed point if it is a fixed point of one of its nontrivial holomorphic automorphisms. We start this note by proving that the set Fix(X) of fixed points of Riemann surface X of genus g${\geq}$2 has at most 82(g-1) elements and this bound is attained just for X having a Hurwitz group of automorphisms, i.e., a group of order 84(g-1). The set of such points is invariant under the group of holomorphic automorphisms of X and we study the corresponding symmetric representation. We show that its algebraic type is an essential invariant of the topological type of the holomorphic action and we study its kernel, to find in particular some sufficient condition for its faithfulness.
This study was conducted in order to inquire into the impact of children's self-concept construction and ego-development enhancement during Group Sandplay Therapy. The Group Sandplay Therapy sessions were held once week, for a total of 20 weeks. The Group Sandplay Therapy Process consisted of playing with sand and creating a sand tray in groups. There were two group in total. Each group had 4 children of the same sex aged from six to seven years old. In order to study the self-concept and ego-development, we used a self-concept test and ego-development as a research tool. In addition, the present research analyzed any changes which tool place by dividing each aspect in each sand tray of the therapy process into a positive subject and a negative subject, and analyzed the changing patterns seen in the sand tray worldas it unfolded. It was proven that an efficient treatment in changing the sand tray world and children's action, had an effect on rearranging the children's mental schemas. In terms of the progress of the sandplay journey, it was seen that negative elements decreased dramatically and positive elements were observed to have increased. As a result it was confirmed that Group Sandplay Therapy had a number of positive effects in the construction of children's self-concept and in terms of the enhancement of children ego-development.
The problem of laterally loaded piles is particularly a complex soil-structure interaction problem. The flexural stresses developed due to the combined action of axial load and bending moment must be evaluated in a realistic and rational manner for safe and economical design of pile foundation. The paper reports the finite element analysis of pile groups. For this purpose simplified models along the lines similar to that suggested by Desai et al. (1981) are used for idealizing various elements of the foundation system. The pile is idealized one dimensional beam element, pile cap as two dimensional plate element and the soil as independent closely spaced linearly elastic springs. The analysis takes into consideration the effect of interaction between pile cap and soil underlying it. The pile group is considered to have been embedded in cohesive soil. The parametric study is carried out to examine the effect of pile spacing, pile diameter, number of piles and arrangement of pile on the responses of pile group. The responses considered include the displacement at top of pile group and bending moment in piles. The results obtained using the simplified approach of the F.E. analysis are further compared with the results of the complete 3-D F.E. analysis published earlier and fair agreement is observed in the either result.
An old result of Whitehead says that the set of derivations of a group with values in a crossed G-module has a natural monoid structure. In this paper we introduce derivation of crossed polymodule and actor crossed polymodules by using Lue's and Norrie's constructions. We prove that the set of derivations of a crossed polygroup has a semihypergroup structure with identity. Then, we consider the polygroup of invertible and reversible elements of it and we obtain actor crossed polymodule.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.