• Title/Summary/Keyword: Group codes

Search Result 242, Processing Time 0.023 seconds

Code automorphism group algorithms and applications

  • Cho, Han-Hyuk;Shin, Hye-Sun;Yeo, Tae-Kyung
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.575-584
    • /
    • 1996
  • We investigate how the code automorphism groups can be used to study such combinatorial objects as codes, finite projective planes and Hadamard matrices. For this purpose, we write down a computer program for computing code automorphisms in PASCAL language. Then we study the combinatorial properties using those code automorphism group algorithms and the relationship between combinatorial objects and codes.

  • PDF

AN EFFICIENT CONSTRUCTION OF SELF-DUAL CODES

  • Kim, Jon-Lark;Lee, Yoonjin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.915-923
    • /
    • 2015
  • Self-dual codes have been actively studied because of their connections with other mathematical areas including t-designs, invariant theory, group theory, lattices, and modular forms. We presented the building-up construction for self-dual codes over GF(q) with $q{\equiv}1$ (mod 4), and over other certain rings (see [19], [20]). Since then, the existence of the building-up construction for the open case over GF(q) with $q=p^r{\equiv}3$ (mod 4) with an odd prime p satisfying $p{\equiv}3$ (mod 4) with r odd has not been solved. In this paper, we answer it positively by presenting the building-up construction explicitly. As examples, we present new optimal self-dual [16, 8, 7] codes over GF(7) and new self-dual codes over GF(7) with the best known parameters [24, 12, 9].

Wind structure and codification

  • Holmes, J.D.;Baker, C.J.;English, E.C.;Choi, E.C.C.
    • Wind and Structures
    • /
    • v.8 no.4
    • /
    • pp.235-250
    • /
    • 2005
  • The paper describes the work of the Working Group on Wind Structure, one of the International Codification Working Groups set up by the International Association of Wind Engineering in 1999. The topics of terrain and exposure, shielding and shelter, topographic effects, tropical cyclone and hurricane wind structure, and thunderstorm wind structure, are described with emphasis on their codification in wind loading codes and standards. Recommendations from the working group are given.

Heavy Metal Contents of Canned Seafoods Packed in Oil (수산물 기름 담금 통조림 식품의 중금속 함량)

  • Heu, Min-Soo;Kim, Jin-Soo
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.307-314
    • /
    • 2004
  • Specification and heavy metal contents of canned seafoods packed in oil were investigated. 30 species of canned tuna were classified by 4 groups as follow; group (sample codes, 1-10) composed of tuna and oil only, group (11-18) composed of tuna, vegetable and oil, group (19-27) composed of tuna, sauce and oil, and group (28-30) composed of tuna, vegetable, sauce and oil. Commercial canned shellfish packed in oil were mainly produced from sea mussel (sample codes, 31 and 32) and oyster (33-35). Can bodies of canned tuna were made by tin-plate, and used c-enamel or aluminium-paste as coating materials. In pH values of canned tuna, sample codes 1-10 (pH 5.55-5.69) and 19-27 (pH 5.17-5.85) were higher than sample codes 11-18 (pH 4.95-5.43) and 28-30 (pH 5.20-5.38). There was no difference in salinity (1.3-1.9%) and vacuum degree (15-18 mmHg) among canned samples. Heavy metal contents of canned seafoods ranged from 1.04-9.03 ppm for Sn, and 0.17-0.68 ppm for Pb. Those values are below the permitted range (less than 150 ppm for Sn and 2 ppm for Pb).

Comparison of graph clustering methods for analyzing the mathematical subject classification codes

  • Choi, Kwangju;Lee, June-Yub;Kim, Younjin;Lee, Donghwan
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.5
    • /
    • pp.569-578
    • /
    • 2020
  • Various graph clustering methods have been introduced to identify communities in social or biological networks. This paper studies the entropy-based and the Markov chain-based methods in clustering the undirected graph. We examine the performance of two clustering methods with conventional methods based on quality measures of clustering. For the real applications, we collect the mathematical subject classification (MSC) codes of research papers from published mathematical databases and construct the weighted code-to-document matrix for applying graph clustering methods. We pursue to group MSC codes into the same cluster if the corresponding MSC codes appear in many papers simultaneously. We compare the MSC clustering results based on the several assessment measures and conclude that the Markov chain-based method is suitable for clustering the MSC codes.

Construction of Block-LDPC Codes based on Quadratic Permutation Polynomials

  • Guan, Wu;Liang, Liping
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.157-161
    • /
    • 2015
  • A new block low-density parity-check (Block-LDPC) code based on quadratic permutation polynomials (QPPs) is proposed. The parity-check matrix of the Block-LDPC code is composed of a group of permutation submatrices that correspond to QPPs. The scheme provides a large range of implementable LDPC codes. Indeed, the most popular quasi-cyclic LDPC (QC-LDPC) codes are just a subset of this scheme. Simulation results indicate that the proposed scheme can offer similar error performance and implementation complexity as the popular QC-LDPC codes.

EXTENSION OF CFD CODES APPLICATION TO TWO-PHASE FLOW SAFETY PROBLEMS

  • Bestion, Dominique
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.365-376
    • /
    • 2010
  • This paper summarizes the results of a Writing Group on the Extension of CFD codes to two-phase flow safety problems, which was created by the Group for Analysis and Management of Accidents of the Nuclear Energy Agency' Committee on the Safety of Nuclear Installations (NEA-CSNI). Two-phase CFD used for safety investigations may predict small scale flow processes, which are not seen by system thermalhydraulic codes. However, the two-phase CFD models are not as mature as those in the single phase CFD and potential users need some guidance for proper application. In this paper, a classification of various modelling approaches is proposed. Then, a general multi-step methodology for using two-phase-CFD is explained, including a preliminary identification of flow processes, a model selection, and a verification and validation process. A list of 26 nuclear reactor safety issues that could benefit from investigations at the CFD scale is identified. Then, a few issues are analyzed in more detail, and a preliminary state-of-the-art is proposed and the remaining gaps in the existing approaches are identified. Finally, guidelines for users are proposed.

A Comparative Study on Effective One-Group Cross-Sections of ORIGEN and FISPACT to Calculate Nuclide Inventory for Decommissioning Nuclear Power Plant

  • Cha, Gilyong;Kim, Soonyoung;Lee, Minhye;Kim, Minchul;Kim, Hyunmin
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.2
    • /
    • pp.99-106
    • /
    • 2022
  • Background: The radionuclide inventory calculation codes such as ORIGEN and FISPACT collapse neutron reaction libraries with energy spectra and generate an effective one-group cross-section. Since the nuclear cross-section data, energy group (g) structure, and other input details used by the two codes are different, there may be differences in each code's activation inventory calculation results. In this study, the calculation results of neutron-induced activation inventory using ORIGEN and FISPACT were compared and analyzed regarding radioactive waste classification and worker exposure during nuclear decommissioning. Materials and Methods: Two neutron spectra were used to obtain the comparison results: Watt fission spectrum and thermalized energy spectrum. The effective one-group cross-sections were generated for each type of energy group structure provided in ORIGEN and FISPACT. Then, the effective one-group cross-sections were analyzed by focusing on 59Ni, 63Ni, 94Nb, 60Co, 152Eu, and 154Eu, which are the main radionuclides of stainless steel, carbon steel, zircalloy, and concrete for decommissioning nuclear power plant (NPP). Results and Discussion: As a result of the analysis, 154Eu and 59Ni may be overestimated or underestimated depending on the code selection by up to 30%, because the cross-section library used for each code is different. When ORIGEN-44g, -49g, and -238g structures are selected, the differences of the calculation results of effective one-group cross-section according to group structure selection were less than 1% for the six nuclides applied in this study, and when FISPACT-69g, -172g, and -315g were applied, the difference was less than 1%, too. Conclusion: ORIGEN and FISPACT codes can be applied to activation calculations with their own built-in energy group structures for decommissioning NPP. Since the differences in calculation results may occur depending on the selection of codes and energy group structures, it is appropriate to properly select the energy group structure according to the accuracy required in the calculation and the characteristics of the problem.

New Decoding Scheme for LDPC Codes Based on Simple Product Code Structure

  • Shin, Beomkyu;Hong, Seokbeom;Park, Hosung;No, Jong-Seon;Shin, Dong-Joon
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.351-361
    • /
    • 2015
  • In this paper, a new decoding scheme is proposed to improve the error correcting performance of low-density parity-check (LDPC) codes in high signal-to-noise ratio (SNR) region by using post-processing. It behaves as follows: First, a conventional LDPC decoding is applied to received LDPC codewords one by one. Then, we count the number of word errors in a predetermined number of decoded codewords. If there is no word error, nothing needs to be done and we can move to the next group of codewords with no delay. Otherwise, we perform a proper post-processing which produces a new soft-valued codeword (this will be fully explained in the main body of this paper) and then apply the conventional LDPC decoding to it again to recover the unsuccessfully decoded codewords. For the proposed decoding scheme, we adopt a simple product code structure which contains LDPC codes and simple algebraic codes as its horizontal and vertical codes, respectively. The decoding capability of the proposed decoding scheme is defined and analyzed using the parity-check matrices of vertical codes and, especially, the combined-decodability is derived for the case of single parity-check (SPC) codes and Hamming codes used as vertical codes. It is also shown that the proposed decoding scheme achieves much better error correcting capability in high SNR region with little additional decoding complexity, compared with the conventional LDPC decoding scheme.

Design of Space-Time Trellis Code with Uniform Error Property (균일 오율의 시공간 격자상 부호 설계)

  • Jung Young-Seok;Lee Jae-Hong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.8 s.350
    • /
    • pp.59-68
    • /
    • 2006
  • The study on the uniform error property of codes has been restricted to additive white Gaussian noise (AWGN) channel, which is generally referred to as geometrical uniformity. In this paper, we extend the uniform error property to space-time codes in multiple-input multiple-output (MIMO) channel by directly treating the probability density functions fully describing the transmission channel and the receiver. Moreover, we provide the code construction procedure for the geometrically uniform space-time trellis codes in fast MIMO channels, which consider the distance spectrum. Due to the uniform error property, the complexity of code search is extensively reduced. Such reduction makes it possible to obtain the optimal space-time trellis codes with high order states. Simulation results show that new codes offer a better performance in fast MIMO channels than other known codes.