• Title/Summary/Keyword: Groundwater supply

Search Result 229, Processing Time 0.019 seconds

The Origin and Geochemical Behavior of Fluoride in Bedrock Groundwater: A Case Study in Samseung Area (Boeun, Chungbuk) (화강암 지역 암반 지하수 내 불소 이온의 기원 및 거동: 충북 보은 삼승면 일대의 현장 조사와 실내 실험 연구)

  • Chae, Gi-Tak;Koh, Dong-Chan;Choi, Byoung-Young
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.555-566
    • /
    • 2008
  • Hydrogeochemical study in Samseung area (Boeun, Chungbuk) and waterrock interaction experiment using rock samples from the area were performed to elucidate the fluoride source in groundwater and explaining geochemical behavior of fluoride ion. Fluoride concentration of public water supply mostly using groundwater in Boeun area was significantly higher in South Korea. The maximum fluoride concentration of the study area was 3.9 mg/L, and 23% of samples exceeded the Korean Drinking Water Standard of fluoride (1.5 mg/L). The average concentration of fluoride was 1.0 mg/L and median was 0.5 mg/L. Because of high skewness (1.3), median value is more appropriate to represent fluoride level of this area. The relationships between fluoride ion and geochemical parameters ($Na^+$, $HCO_3$, pH, etc.) indicated that the degree of waterrock interaction was not significant. However, high fluoride samples were observed in $NaHCO_3$ type on Piper's diagram. The negative relationship between fluoride and $NO_3$ ion which might originate from surface contaminants was obvious. These results indicate that fluoride ion in groundwater is geogenic origin. The source of fluoride was proved by waterrock interaction batch test. Fluoride concentration increased up to 1.2 mg/L after 96 hours of reaction between water and biotite granite. However, the relationship between well depth and fluoride ion, and groundwater age and fluoride ion was not clear. This indicates that fluoride ion is not correlated with degree of waterrock interaction in this area but local heterogeneity of fluoriderich minerals in granite terrain. High fluoride concentration in Boeun area seems to be correlated with distribution of permeable structures in hard rocks such as lineaments and faults of this area. This entails that the deep bedrock groundwater discharges through the permeable structures and mixed with shallow groundwater.

Arsenic Removal Using Iron-impregnated Ganular Activated Carbon (Fe-GAC) of Groundwater (철침착 입상활성탄(Fe-GAC)을 이용한 지하수 내 비소 제거기술)

  • Yoon, Ji-Young;Ko, Kyung-Seok;Yu, Yong-Jae;Chon, Chul-Min;Kim, Gyoo-Bum
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.589-601
    • /
    • 2010
  • Recently it has been frequently reported arsenic contamination of geologic origin in groundwater. The iron-impregnated ranular activated carbon (Fe-GAC) was developed for effective removal of arsenic from groundwater n the study. Fe-GACs were prepared by impregnating iron compounds into a supporting medium (GAC) with 0.05 M iron nitrate solution. The materials were used in arsenic adsorption isotherm tests to know the effect of iron impregnation time, batch kinetic tests to understand the influence of pH, and column tests to evaluate for the preliminary operation of water treatment system. The results showed that the minimum twelve hours of impregnation time were required for making the Fe-GAC with sufficient iron content for arsenic removal, confirmed by a high arsenic adsorption capacity evaluated in the isotherm tests. Most of the impregnated iron compounds were iron hydroxynitrate $Fe_4(OH)_{11}NO_3{\cdot}2H_2O$ but a mall quantity of hematite was also identified in X-ray diffraction(XRD) analysis. The batch isotherms of Fe-GAC for arsenic adsorption were well explained by Langmuir than Freundlich model and the iron contents of Fe-GAC have positive linear correlations on logarithmic plots with Freundlich distribution coefficients ($K_F$ and Langmuir maximum adsorption capacities ($Q_m$. The results of kinetic experiments suggested hat Fe-GAC had he excellent arsenic adsorption capacities regardless of all pH conditions except for pH 11 and could be used a promising adsorbents for groundwater arsenic removal considering the general groundwater pH range of 6-8. The pseudo-second order model, based on the assumption that the ate-limiting step might be chemisorption, provided the best correlation of the kinetic experimental data and explained the arsenic adsorption system f Fe-GAC. The column test was conducted to valuate the feasibility of Fe-GAC use and the operation parameters in arsenic groundwater treatment system. The parameters obtained from the column test were the retardation actor of 482.4 and the distribution coefficient of 581.1 L/mg which were similar values of 511.5-592.5 L/mg acquired from Freundlich batch isotherm model. The results of this study suggested that Fe-GAC could be used as promising adsorbent of arsenic removal in a small groundwater supply system with water treatment facility.

Development of Riverbank Filtration Water Supply and Return System for Sustainable Green House Heating and Cooling (지속가능 온실 냉난방을 위한 강변여과수 취수 및 회수시스템 개발)

  • Cho, Yong;Kim, Dae-Geun;Kim, Hyoung-Soo;Moon, Jong-Pil
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.20-29
    • /
    • 2012
  • The green house on the waterfront is air-conditioned by a water-source heat pump system with riverbank filtration water. In order to supply riverbank filtration water in alluvium aquifer, the riverbank filtration facility for water intake and recharge, two pumping wells and one recharge well, has been constructed. The research site in Jinju, Korea was chosen as a good site for riverbank filtration water supply by the surface geological survey, electrical resistivity soundings, and borehole surveys. In the results of two boreholes drilling at the site, it was revealed that the groundwater table is about 3 m under the ground, and that the sandy gravel aquifer layer in the thickness of 6.5 m and 3.5 m occurs at 5 m and 7 m in depth below the ground level respectively. To prevent the recharge water from affecting the pumped water which might be used as heat source or sink, the distance between pumping and recharge wells is designed at least 70 m with a quarter of recharged flow rate. It is predicted that the transfer term, the recharge water affects the pumping well, is over 6 months of heating season. Hydrogeological simulation and underground water temperature measurement have been carried out for the pumping and recharge well positions in order to confirm the capability of sustainable green house heating and cooling.

Evaluation of Stored Rainwater Quality and Economic Efficiency at Yangdo Elementary Rainwater Harvesting System (양도 초등학교 빗물이용시설의 수질 및 경제성 평가)

  • Kim, Kiyoung;Park, Hyunju;Kim, Tschungil;Han, Mooyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.333-341
    • /
    • 2014
  • To supply substitution water, $2m^3$ of capacity of rainwater harvesting system is designed calculating rainfall, catchment area and LPCD and has a effects to 34.4% of substitution water supply and 237 days of service day. Rainwater of drinking water quality was judged to be suitable except for bacteria problem, however, groundwater is exceeded in nitrate nitrogen, the evaporation residue and also bacteria, which means that the rainwater is suitable for use as water supply. In addition, to consider cost-benefit ratio, economic analysis conducted. The result is that B/C ratio of RWHS (10 years) is 1.70. It means total benefit is bigger than cost. Except to social factor in this study, there are a variety of benefit such as flood or drought prevention, educational effects inspiring water conservation awareness.

Genetic Prokaryotic Diversity in Boring Slime from the Development of a Groundwater Heat Pump System (지하수 히트펌프 시스템의 지중 환경관리를 위한 시추 슬라임의 원핵생물 유전자 다양성)

  • Kim, Heejung;Lee, Siwon;Park, Junghee;Joun, Won-Tak;Kim, Jaeyeon;Kim, Honghyun;Lee, Kang-Kun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.550-556
    • /
    • 2016
  • Groundwater heat pump (GWHP) systems must consider phenomena such as clogging to improve system efficiency and maintenance. In this study, we evaluated the prokaryotic diversity in a boring slime sample obtained at a depth of 10 m, which represented an undisturbed sample not affected by aquifer drawdown. Bacteria belonging to the phyla Proteobacteria (20.8%), Acidobacteria (18.8%), Chloroflexi (16.9%), and Firmicutes (10.2%) were found. Additionally, 144 species were identified as belonging to the genus Koribacter. Archaeal phyla were detected including Thaumarchaeota (42.8%), Crenarchaeota (36.9%), and Euryarchaeota (17.4%) and the class level comprised the miscellaneous Crenarchaeota group (MCG), Finnish forest soil type B (FFSB), and Thermoplasmata, which collectively accounted for approximately 69.4% of the detected Archaea. Operational taxonomic units (OTUs) were analyzed to reveal 3,565 bacterial and 836 archaeal OTUs, with abundances of 7.81 and 6.68, and richnesses of 5.96E-4 and 2.86E-3, respectively. The distribution of the groundwater microbial community in the study area showed a higher proportion of non-classified or unidentified groups compared to typical communities in surface water and air. In addition, 135 (approx. 1.9%) reads were assigned to a bacterial candidate associated with clogging.

Characteristics of Aquifer System and Change of Groundwater Level due to Earthquake in the Western Half of Jeju Island (제주도 서반부의 대수층 체계와 지진에 의한 지하수위 변동 특성)

  • Ok, Soon-Il;Hamm, Se-Yeong;Kim, Bong-Sang;Cheong, Jae-Yeol;Woo, Nam-Chil;Lee, Soo-Hyoung;Koh, Gi-Won;Park, Yun-Seok
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.359-369
    • /
    • 2010
  • This study characterizes aquifer system and hydrogeologic property in the western half of Jeju Island where wells were drilled for regional water supply in three sub-areas (northwestern, western, and southwestern sub-areas). The aquifer system of the northwestern sub-area is largely composed of upper high-permeability layer, upper low-permeability layer, lower high-permeability layer, and lower low-permeability layer. On the other hand, the aquifer systems of the western and southwestern sub-areas are mostly composed of upper low-permeability layer, high-permeability layer, and lower low-permeability layer. Transmissivity and specific capacity decrease in the order of the northwestern, western, and southwestern sub-areas. The relationship between specific capacity and the top surface of tuff is negative with a high correlation coefficient of -0.848, indicating that the tuff acts as the bottom of the aquifer. Groundwater level change due to the 2004 Sumatra earthquake is an average of 23.74 cm in the northwestern sub-area, an average of 9.48 cm in the western sub-area, and none in the southwestern sub-area. Further, it is found that groundwater change due to the earthquake has a positive relationship with transmissivity and specific capacity.

Characterizations of Yields and Seed Components of Sesame (Sesamum indicum L.) as Affected by Soil Moisture from Paddy Field Cultivation

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sanghun;Kim, Sung-Up;Oh, Eunyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.369-382
    • /
    • 2017
  • Accurate and optimal water supply to cereal crop is critical in growing stalks and producing maximum yields. Recently, upland crops are cultivated in paddy field soils to reduce overproduced rice in Korea. In order to increase productivity of cereal crops in paddy fields which have poor percolation and drainage properties, it is necessary to fully understand crop response to excessive soil water condition and management of soil drainage system in paddy field. The objectives of this study were to investigate effects of excessive soil water to sesame growth and to quantify stress response using groundwater levels. Two cultivars of sesame were selected to investigate; Gunbak and Areum. These sesames were planted in paddy fields located in Miryang, Gyeongnam with different soil drainage levels and drainage systems. The experiment site was divided into two plots by drainage class; very poorly and somewhat poorly drained. Two different drainage systems were applied to alleviate excessive soil water in each plot: open ditch and pipe drainage system. Soil water contents and groundwater levels were measured every hour during growing season. Pipe drainage system was significantly effective to alleviate wet injury for sesame in paddy fields. Pipe drainage system decreased average soil moisture content and groundwater level during sesame cultivation. This resulted in greater yield and lignan contetns in sesame seeds than ones from open ditch system. Comparison between two cultivars, Gunbak had greater decrease in growth and yield by excessive soil water and high groundwater level than Areum. Seed components (lignan) showed decrease in seeds as soil water increased. When soil moisture content was greater than 40%, lignan content tended to decrease than ones from less soil moisture content. Based on these results, pipe drainage system would be more effective to reduce wet injury to sesame and increase lignan component in paddy field cultivation.

Numerical Simulation of Salinity Intrusion into Groundwater Near Estuary Barrage with Using OpenGeoSys (OpenGeoSys를 이용한 하굿둑 인근 지하수 내 염분 침투 수치모의)

  • Hyun Jung Lee;Seung Oh Lee;Seung Jin Maeng
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.157-164
    • /
    • 2023
  • The estuary dam is a structure installed and operated in a closed state except when flood event occurs to prevent inland saltwater intrusion and secure freshwater supply. However, the closed state of dam leads to issues such as eutrophication, so it is necessary to examine the extent of saltwater intrusion resulting from the opening of sluice gates. Groundwater, due to its subsurface conditions and slow flow characteristics, is widely analyzed using numerical models. OpenGeoSys, an open-source software capable of simulating Thermal- Hydraulic- Mechanical- Chemical phenomena, was adopted for this study. Simulations were conducted assuming natural flow conditions without dam and operating considering busy farming season, mostly from March to September. Verification of the model through analytical solutions showed error of 3.7%, confirming that OpenGeoSys is capable of simulating saltwater intrusion for these cases. From results simulated for 10 years, considering for the busy farming season, resulted in about 46% reduction in saltwater intrusion length compared to natural flow conditions, approximately 74.36 m. It may be helpful to make choices to use groundwater as a water resource.

Occurrence of acidic and arsenic-rich groundwater in suburban Perth, Western Australia

  • Ron-Watkins;John-Angeloni;Jones, Bobak-Willis;Steve-Appleyard
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.80-81
    • /
    • 2003
  • The Swan Coastal Plain, on which the City of Perth (pop. 1.32 million) is situated, is formed of aeolian sands of Pleistocene-Recent age. The mainly unconsolidated sediments build a series of dune lines paralleling the coastline. The near-surface water-table sees expression in numerous shallow freshwater lakes and marshes in the interdunal depressions. The sands are highly permeable, and 〉 70% of the city’s total water supply is derived from this local aquifer. (omitted)

  • PDF

Heating Characteristics of the Soils for the Application of Electrical Resistance Heating with Soil Vapor Extraction (전기 저항열을 이용한 유류 오염토 복원공정 적용을 위한 토양의 가열특성 연구)

  • Yun Yeo-Bog;Ko Seok-Oh;Park Gi-Ho;Park Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.45-53
    • /
    • 2006
  • This study was performed to evaluate the heating characteristics of soils for the application of electrical resistance heating process combined with soil vapor extraction. Laboratory tests were conducted to find out optimum heating conditions by the adjustment of electrical supply and electrode. Results show that fine soil particles are more efficient for electrical heating. As water content of soil increases, more efficient electrical heating is observed. However, as the soil is saturated with water above the soil porosity, decrease in the heating efficiency is observed. The higher the voltage, is and the shorter the distance between the electrodes is, the better the heating efficiency is. The soil contaminated by fuel is also more efficient than non-contaminated soil in electrical resistance heating. From the relationship between the intial electrical current and the conductivity obtained in this study, soil temperature by electrical heating can be estimated.