• Title/Summary/Keyword: Groundwater Use Characteristics

Search Result 158, Processing Time 0.025 seconds

Analysis of Groundwater Conductivity and Water Temperature Changes in Greenhouse Complex by Water Curtain Cultivation (수막용수 사용으로 인한 시설재배지역의 지하수 수온과 전기전도도 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.93-103
    • /
    • 2023
  • This study aimed to analyze the impact of water curtain cultivation in the greenhouse complexes on groundwater's electric conductivity and water temperature. The greenhouse complexes are mainly situated along rivers to secure water resources for water curtain cultivation. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. As a result of analyzing the electric conductivity and water temperature, the following differences were found in the observed characteristics by region. 1) The electric conductivity and water temperature of the riverside area, where the permeability is high and close to rivers, showed a constant pattern of annual changes due to the influence of river flow and precipitation. 2) The flat land in general agricultural areas showed general characteristics of bedrock observation in the case of water temperature. Still, it seemed more affected by the surrounding well's water use and water quality. The electric conductivity did not show any particular trend and was influenced by the surrounding environment according to the location of each point.

The characteristics of the Groundwater Quality in Seoul (서울시 지하수 수질특성에 관한 연구)

  • 김익수;엄석원;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.225-228
    • /
    • 2003
  • For the purpose of finding out the distributions of groundwater uses, the effect of facilities on the parameter and the correlations among measurements, various statistical analysis were carried out with the data of groundwater quality measurements from January to December in 2002. 1. The rates of groundwater for drinking water were 10.5% in Yangcheon-Gu, 10.2% in Kangdong-Gu, and 9.9% in Eunpyung-Gu. The rates of other uses of groundwater were shown to be 58.1%(786 wells) for civil defense emergency, 22.1%(299 wells) for contamination-concerning, 9.8%(133 wells) for water quality monitoring, consisting of 90% of all groundwater. 2. The 52.6% of groundwater for drinking were demonstrated to be appropriate while 91.9% for tither uses-domestic, industrial, agricultural uses- were shown to be proper. 3. For drinking water, the average values of colar, turbidity, NH3-N, F, and Fe were 11.216 degree, 2.138 NTU, 2.458mg/l, 0.212mg/1 and 0.507mg/1 respectively. 4. In cases of drinking water wells for emergency, the results of statistical analysis showed that building year of the wells, depth and pumping rate didn't affect on whether it was proper for that use or not. It were shown that there were linear correlations between depth and NO$_3$-N(-0.171) and F ̄(0.332) while the correlation coefficients were 0.381 and -0.169 between the building year of well and depth and pumping rate respectively.

  • PDF

Estimation of Groundwater Recharge with Spatial-Temporal Variability (시공간적 변동성을 고려한 지하수 함양량의 산정방안)

  • Kim, Nam Won;Chung, Il Moon;Won, Yoo Seung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.691-695
    • /
    • 2004
  • In recent years, mary studies for efact estimation of groudwater recharge has been performed. They can be categorized into three groups : analytical method by means of groundwater recession curve, water budget analysis based on watershed, and the method using groundwater model. Since groundwater recharge rate shows the spatial-temporal variability due to hydrogeological heterogeneity, existing studies have various limits to deal with these characteristics. The method of estimating daily recharge rate with spatial-temporal variation based on rainfall-runoff model is suggested in this study for this purpose. This method is expected to enhance existing indirect method by means of reflecting climatic conditions, land use and hydrogeological heterogeneity.

  • PDF

A Study on the Characteristics of Heat Source Temperature for Two-Well Geothermal System Using Numerical Simulation (수치 시뮬레이션을 이용한 복수정(Two-Well) 개방형 지열 시스템의 열원수 온도 변화 검토)

  • Cho, JeongHeum;Nam, YuJin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.207-212
    • /
    • 2015
  • The use of groundwater and ground_heat is one of the ways to use natural and renewable energy, and it has been considered as a technology to reduce greenhouse gas emissions and increase energy-saving. There are a few researches on the optimum design for the open-loop geothermal system. In this study, to develop the optimal design method numerical simulation of the open-loop geothermal system with two-wells was performed by a groundwater and heat transfer model. In this paper, a study was performed to analyze the system performance according to well distance and pumping flow rate. In the result, average heat exchange rate and heat source temperature were calculated and it was found that they were dependent on the pumping rate.

Simultaneous Analysis of 13 Pesticides in Groundwater and Evaluation of its Persistent Characteristics

  • Song, Dahee;Park, Sunhwa;Jeon, Sang-Ho;Kim, Ki-In;Hwang, Jong Yeon;Kim, Moonsu;Jo, Hun-Je;Kim, Deok-hyun;Lee, Gyeong-Mi;Kim, Hye-Jin;Kim, Tae-Seung;Chung, Hyen Mi;Kim, Hyun-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.434-451
    • /
    • 2017
  • For this study, groundwater samples for 3 years from 2011 through 2013 were collected at 106 groundwater monitoring site in Korea. These groundwater samples were analyzed for 13 pesticides such as cabofuran, pentachlorobenzene, hexachlorobenzene, simazine, atrazine, lindane (gamma-HCH), alachlor, heptachlor, chlordane (total), endosulfan (1, 2), dieldrin, endrin, 4,4-DDT. The objectives of this study were to determine the detection frequency and their concentrations of 13 pesticides and evaluate the health risk level considering ingestion, inhalation, and skin contact using concentrations of 13 pesticides in groundwater samples. An analysis was used for the simultaneous determination for 13 pesticides using GC-MS. GC-MS was performed on HP-5ms, using helium ($1ml\;min^{-1}$) as carrier gas. The average recoveries of the pesticides were from 92.8% to 120.8%. The limits of detection (LODs) were between $0.004{\mu}g\;L^{-1}$ and $0.118{\mu}g\;L^{-1}$ and the limits of quantification (LOQs) were between $0.012{\mu}g\;L^{-1}$ and $0.354{\mu}g\;L^{-1}$. 106 groundwater wells were selected. 54 wells were from well to monitor background groundwater quality and 52 wells were from well to monitor groundwater quality in industrial or contamination source area. Eight pesticides including pentachlorobenzene, lindane (Gamma-HCH), heptachlor, chlordane (total), Endosulfan (1, 2), dieldrin, endrin, and 4,4-DDT were not detected in groundwater samples. The detection frequency for hexachlorobenzene, alachlor, carbofuran and simazine was 23.4%, 11.4%, 7.3%, and 1.0%, respectively. Atrazine was detected once in 2011. The average concentrations were $0.00423{\mu}g\;L^{-1}$ for carbofuran, $0.000243{\mu}g\;L^{-1}$ for alachlor, $0.00015{\mu}g\;L^{-1}$ for simazine, and $0.00001{\mu}g\;L^{-1}$ for hexachlorobenzene. The detection frequency of hexachlorobenzene was high, but the average concentration was low. In the contaminated groundwater, the detection frequency for hexachlorobenzene, alachlor, carbofuran, simazine and atrazine was 26.1%, 21.3%, 7.1%, 1.9% and 0.3%, respectively. In the uncontaminated groundwater, detection frequency for hexachlorobenzene, carbofuran and alachlor were 20.2%, 7.5%, and 1.9% respectively. Simazine and atrazine were not detected at uncontaminated groundwater wells. According to the purpose of groundwater use, atrazine was detected for agricultural groundwater use. Hexachlorobenzene showed high detection frequency at agricultural groundwater use area where the animal feeding area and golf course area were located. Alachlor showed more than 50% detection frequency at cropping area, pollution concern river area, and golf course area. Atrazine was detected in agricultural water use area. By land use, the maximum detection frequency of alachlor was found near an orchard. For human risk assessment, the cancer risk for the 5 pesticides was between $10^{-7}$ and $10^{-10}$, while the non-cancer risk (HQ value) was between $10^{-4}$ and $10^{-6}$. For conclusion, these monitoring study needs to continue because of the possibility of groundwater contamination based on various purpose of groundwater use.

Evaluation of Regional Characteristics Using Time-series Data of Groundwater Level in Jeju Island (시계열 자료를 이용한 제주도 지하수위의 지역별 특성 분석)

  • Song, Sung-Ho;Choi, Kwang-Jun;Kim, Jin-Sung
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.609-623
    • /
    • 2013
  • Fluctuation patterns of groundwater level as a factor that reflects the characteristics of groundwater system can be categorized as the various types of aquifer with the time-series data. Time-series data on groundwater level obtained from 115 monitoring wells in Jeju Island were classified according to variation types, which were largely affected by rainfall(Dr), rainfall and pumping(Drp), and unknown cause(De). Analysis results indicate that 106 wells belong to Dr and Drp and the ratio of the wells with the wide range of fluctuation in the western and northern regions was higher than that in the eastern and southern regions. From the results that Drp is relatively higher than Dr in the western region which has the largest agricultural areas, groundwater level fluctuations may be affected significantly due to the intensive agricultural use. Non-parametric trend analysis results for 115 monitoring wells show that the increasing and decreasing trends as the ratio of groundwater levels were 14.8% and 22.6%, respectively, and groundwater levels revealed to be increased in the western, southern and northern regions excluding eastern region. Results of correlation analysis that cross-correlation coefficients and the time lags in the eastern and western regions are relatively high and short, respectively, indicate that the rainfall recharge effect in these regions is relatively larger due to the gentle slope of topography compared to that in the southern and northern regions.

Evaluation of Percolation Rate of Bedrock Aquifer in Coastal Area (해안지역 암반대수층의 침누수량 평가)

  • Lee, Jeong-Hwan;Jung, Haeryong;Park, Joo-Wan;Yoon, Jeong Hyoun;Cheong, Jae-Yeol;Park, Sun Ju;Jun, Seong-Chun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.21-33
    • /
    • 2016
  • Estimation of groundwater hydrologic cycle pattern is one of the most critical issues in sustainable management of groundwater resources in coastal area. This study estimated groundwater percolation by using the water balance methodology and hydrogeological characteristics of land use and soil. Evapotranspiration was computed by using the Thornthwaite method, and surface runoff was determined by using the SCS-CN technique. Groundwater storage change was obtained as 229 mm/a (17.8% of the average annual rainfall, 1286 mm/a), with 693 mm/a (60.1%) of evapotranspiration and 124 mm/a (9.6%) of surface runoff. Rainfall and groundwater storage change was highly correlated, comparing with the relationships between rainfall and evapotranspiration, and between rainfall and surface runoff. This result indicates that groundwater storage change responds more sensitively to precipitation than evapotranspiration and surface runoff.

Evaluation of Groundwater Recharge using a Distributed Water Balance Model (WetSpass-M model) for the Sapgyo-cheon Upstream Basin (분포형 물수지 모델(WetSpass-M)을 이용한 삽교천 상류 유역에서의 월별 지하수 함양량 산정)

  • An, Hyowon;Ha, Kyoochul
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.47-64
    • /
    • 2021
  • In this study, the annual and monthly groundwater recharge for the Sapgyo-cheon upstream basin in Chungnam Province was evaluated by water balance analysis utilizing WetSpass-M model. The modeling input data such as topography, climate parameters, LAI (Leaf Area Index), land use, and soil characteristics were established using ArcGIS, QGIS, and Python programs. The results showed that the annual average groundwater recharge in 2001 - 2020 was 251 mm, while the monthly groundwater recharge significantly varied over time, fluctuating between 1 and 47 mm. The variation was high in summer, and relatively low in winter. Variation in groundwater recharge was the largest in July in which precipitation was heavily concentrated, and the variation was closely associated with several factors including the total amount of precipitation, the number of days of the precipitation, and the daily average precipitation. This suggests the extent of groundwater recharge is greatly influenced not only by quantity of precipitation but also the precipitation pattern. Since climate condition has a profound effect on the monthly groundwater recharge, evaluation of monthly groundwater recharge need to be carried out by considering both seasonal and regional variability for better groundwater usage and management. In addition, the mathematical tools for groundwater recharge analysis need to be improved for more accurate prediction of groundwater recharge.

Feasibility Mapping of Groundwater Yield Characteristics using Weight of Evidence Technique based on GIS in the Pocheon Area (GIS 기반 Weight of Evidence 기법을 이용한 포천 지역의 지하수 산출특성 예측도 작성)

  • Heo Seon-Hee;Lee Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.6
    • /
    • pp.493-503
    • /
    • 2005
  • In this study, the weight of evidence(WofE) technique based on GIS was applied to spatially estimate the groundwater yield characteristics at the Pocheon area In Gyunggi-do. The groundwater preservation depends on many hydro-geologic factors that include hydrologic data, land-use data, topographic data, geological map and other natural materials collected at the site, even with man-made things. All these data can be digitally processed and managed by GIS database. In the applied technique of WofE, the prior probabilities were estimated as the factors that affect the yield on lineament, geology, drainage pattern or river system density, landuse and soil. We calculated the value of the weight values, W+ and W-, of each factor and estimated the contrast value of it. Results by the groundwater yield characteristic computation using this scheme were presented feasibility map in the form of the posterior probability to the consideration of in-situ samples. It is concluded that this technique is regarded as one of the effective techniques for the feasibility mapping related to the estimation of groundwater-bearing potential zones and its spatial pattern.

Estimation of Distributed Groundwater Recharge in Jangseong District by using Integrated Hydrologic Model (통합수문모형을 이용한 장성지역의 분포형 지하수 함양량 추정)

  • Chung, Il-Moon;Park, Seunghyuk;Lee, Jeong Eun;Kim, Min Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.517-526
    • /
    • 2018
  • As groundwater recharge shows the heterogeneity in space and time due to land use and soil types, estimating daily recharge by integrated hydrologic analysis is needed. In this work, the SWAT-MODFLOW model was applied to compute daily based groundwater recharge in Jangseong region. The accuracy of the model was evaluated by comparing the observed and calculated values of the unsteady groundwater flow levels after calibrating the observed and calculated flow rates of the stream for a hydrological analysis. The estimated hydrologic components showed a strong correlation with each other and significant spatial variations regarding the groundwater recharge rate in accordance with the heterogeneous watershed characteristics such as subbasin slope, land use, and soil type. Overall, it was concluded that the coupled hydrologic models were capable of simulating the spatial variation with respect to the hydrologic component process in surface water and groundwater. The average recharge rate was estimated at approximately 20.8%.