• Title/Summary/Keyword: Grounding method

Search Result 295, Processing Time 0.033 seconds

Research on Comparison of Individual and Connecting Grounding Electrode for Potential Rise Distribution (개별 접지전극과 연접된 접지전극의 전위상승 분포 비교 연구)

  • Gil, Hyoung-Jun;Choi, Chung-Seog;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.57-62
    • /
    • 2008
  • This paper deals with a comparison of individual and connecting grounding electrode for potential rise. When a test current flowed through grounding electrode, potential rise was measured and analyzed for grounding method using a electrolytic tank in real time. In order to analyze the potential rise of grounding systems, a hemispherical water tank experimental apparatus was studied. Potential rise was measured and analyzed regarding the grounding method and distance by using this apparatus. The apparatus was composed of a hemispherical water tank, AC power supply, a movable potentiometer, and test grounding electrodes. The potential rise was measured by the horizontal moving probe of the potentiometer. The grounding electrodes were designed and fabricated with ground rods on a scale of one-eightieth. Potential rises of individual grounding electrode were higher than those of connecting grounding electrode. The distributions of surface potential are dependent on the distance from grounding electrode.

A Study on How to Lower the Grounding Impedance by Needles-typed Grounding Rods (접지침봉에 의한 접지임피던스를 낮추는 방안 연구)

  • Park, Sung-Yeol
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.19-28
    • /
    • 2022
  • Purpose: One of the methods for preventing disasters such as fire, explosion, and electric shock caused by electricity is to perform grounding. In case of the grounding current includes a frequency component having a high, it is preferable to measure grounding impedance rather than grounding resistance. This study proposes countermeasures to reduce grounding impedance to suppress an ground potential rise due to a grounding current having a frequency component of several kHz or more. Method: General grounding rods and needles-typed grounding rods were buried in the ground, and grounding resistance and grounding impedance were measured, respectively. The characteristics of grounding impedance according to frequency were identified. Result: There was little difference in the measurement results of the grounding resistance between general grounding rods and needles-typed grounding rods. In a frequency range lower than 62.5kHz, there was little difference in the measurement results of the grounding resistance between general grounding rods and needles-typed grounding rods. In a frequency range higher than 62.5kHz, the grounding impedance of needles-typed grounding rods was reduced by about 15% than the grounding impedance of general grounding rods. Conclusion: In the commercial frequency domain, it is effective to connect several grounding rods (common grounding) to lower the grounding resistance value. In the frequency domain of several kHz or more, it is expected that needles-typed grounding rods can effectively reduce the ground potential rise due to the grounding current.

Numerical Calculation of Longitudinal Current Distribution in Grounding Electrode for Analyzing the Grounding Impedance (접지임피던스 분석을 위한 접지전극의 전류분포 수치계산)

  • Cho, Sung-Chul;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.1
    • /
    • pp.46-52
    • /
    • 2013
  • The current distribution passing through grounding electrode is required for calculating an impedance of grounding electrode using the electromagnetic field model. In this paper the numerical calculation for currents passing through a grounding electrode as a function of frequency was given. The proposed approach is based on the wire antenna model(AM) in the frequency domain. The Pocklington's equation driven from the wire antenna theory was numerically calculated by the Galerkin's method. The triangle function was applied to both the basis function and the weighting function. The current distribution of a horizontal ground electrode was simulated in MATLAB. Also these results were compared with the data obtained from the CDEGS HIFREQ calculation.

Development of Simplified Collision and Grounding Strength Assessment System of Oil Tankers (유조선의 간이 충돌/좌초강도 평가시스템 개발)

  • Lee T.K.;Kim J.D.;Chun T.B.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.2
    • /
    • pp.86-94
    • /
    • 1999
  • This paper describes a development of Collision/grounding Strength Assessment System (COSAS) using simplified method. This method is formulated in closed-form equation by taking into account crushing caused by bulbous bow collision and cutting caused by forward speed grounding. To verify the accuracy of the developed system, some examples for test models of double side/bottom structure in collision/grounding situation are considered. This system might be useful for analysis of structural damage of oil tankers in collision/grounding.

  • PDF

Measurements of the Ground Resistance using the Test Current Transition Method in Powered Grounding Systems (측정전류전이법을 이용한 운전중인 접지시스템의 접지저항 측정)

  • Lee, Bok-Hui;Eom, Ju-Hong;Kim, Seong-Won
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.8
    • /
    • pp.347-353
    • /
    • 2002
  • This paper presents an accurate method for measuring the ground resistance in powered grounding system. Most of substations and electric power equipments are interconnected to an extensive grounding network of overhead ground wires, neutral conductors of transmission lines, cable shields, and etc. The parasitic effects due to circulating ground currents and ground potential rise make a significant error in measuring the ground resistance. The test current transition method was proposed to reduce the effects of stray ground currents, ground potential rise and harmonic components in measurements of the ground resistance for powered grounding systems. The instrumental error of the test current transition method is decreased as the ratio of the test current signal to noise(S/N) increases. It was found from the test results that the proposed measuring method of the ground resistance is more accurate than the conventional fall-of-potential method or low-pass filter method, and the measuring error was less than 3[%]when S/N is 10.

Problems and Inprovement Method of Grounding System in Electrical Facilities (건축전기설비에 적용되는 접지시스템 문제점과 개선방안)

  • Chung, Young-Ki;Kwak, Hee-Ro;Shin, Hyo-Sub;Chung, Chun-Byoung;Nam, Taik-Joo
    • Electric Engineers Magazine
    • /
    • v.228 no.8
    • /
    • pp.52-57
    • /
    • 2001
  • Presently the Korean grounding system uses TN system, multi-grounding method with IT independent grounding method. Nevertheless TN system can't exist with TT system in the technological terms. If they coexist, it causes ground-fault circuit not to operate, and brings about different electrical potential rise by customer system. It brings about serious problems for safety. This paper aims for improving method of grounding system based on the technical analysis on instances in foreign countries and Korea. Almost standards and construction manner were apt to be internationalized after WTO/TBT agreement was concluded. The internal grounding systems should meet the international criteria and reliability for safety, and be provided with technologically impeccable standards.

  • PDF

Comparison of residual strength-grounding damage index diagrams for tankers produced by the ALPS/HULL ISFEM and design formula method

  • Kim, Do Kyun;Kim, Han Byul;Mohd, Mohd Hairil;Paik, Jeom Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.47-61
    • /
    • 2013
  • This study compares the Residual ultimate longitudinal strength - grounding Damage index (R-D) diagrams produced by two analysis methods: the ALPS/HULL Intelligent Supersize Finite Element Method (ISFEM) and the design formula (modified Paik and Mansour) method - used to assess the safety of damaged ships. The comparison includes four types of double-hull oil tankers: Panamax, Aframax, Suezmax and VLCC. The R-D diagrams were calculated for a series of 50 grounding scenarios. The diagrams were efficiently sampled using the Latin Hypercube Sampling (LHS) technique and comprehensively analysed based on ship size. Finally, the two methods were compared by statistically analysing the differences between their grounding damage indices and ultimate longitudinal strength predictions. The findings provide a useful example of how to apply the ultimate longitudinal strength analysis method to grounded ships.

Effects of Maximum Probe Spacing of Soil Resistivity Survery on Substation Grounding Analysis (변전소 접지설계를 위한 대지저항율 측정시 전극간 최대간격이 접지해석에 미치는 영향)

  • 정길조;곽희로;최종기
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.8
    • /
    • pp.382-386
    • /
    • 2001
  • Presently, typical maximum probe spacing of soil resistivity survey(Wenners 4 pin method) is 20 m in case of 154 K substation grounding design of KEPCO. This paper examined the effects of maximum probe spacing of wenner method on the equivalent soil modeling and the accuracy of grounding resistance measurement by comparing the calculated FOP(Fall-of-Potential) curves of various soil models with the measured one at 154kV H substation. The comparison results showed that the inaccurate estimation of deep soil resistivity, which is caused from the short probe spacing of soil resistivity survey, can produce large errors on measurement of grounding resistance. In this paper a quantitative analysis of FOP at H substation has been presented.

  • PDF

Analysis of error factors of the Fall-of-potential test method in measurements of grounding impedance (전위강하법에 의한 접지임피던스 측정 시 오차요인 분석)

  • Jeon, Byung-Wook;Lee, Su-Bong;Jung, Dong-Cheol;Lee, Bok-Hee;Ahn, Chang-Hwan
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.313-316
    • /
    • 2008
  • This paper presents the error factors of Fall-of-potential test method used in measurements of the grounding-system impedance. This test methods inherently can introduce two possible errors in the measurements of grounding-system impedance: (1) ground mutual resistance due to current flow through ground from the ground electrode to the current probe, (2) ac mutual coupling between the current test lead and the potential test lead. The errors of ground mutual resistances and ac mutual coupling are expressed by the equation in calculating grounding impedance. These equations were calculated by Matlab that is commercial tool using mathematical calculation. The results of calculation were applied to correct grounding impedance.

  • PDF

A Study on the Mechanization of the Grounding Rod Earth Construction Method to Improve the Grounding Resistance Characteristics (봉형접지극 접지저항 향상을 위한 기계화 시공 연구)

  • Park, Jung-Shin;Cho, Sung-Jae;An, In-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.143-150
    • /
    • 2009
  • The bar-shaped electrode is very popular in earth construction for its easy obtainments of the regulative grounding resistance values on power distribution systems in many countries. For these reason, a lots of researches are being proceeded on its deformation and materials. But the grounding construction has limit for improvement the grounding resistance characteristics not only by the improvement of the driven electrode, because that the grounding characteristics are very sensitive to soils(hard, soft). This study is about the construction methods on which the driven electrode can be serially or parallely connected using by hollow screw rod for obtaining the regulative grounding resistance values. The experimental results show that the grounding resistance values are reduced more than 30[%] comparing with the other construction methods under the same conditions(earth resistance, numbers of driven electrode, construction method of serial and parallel, chemicals for reducing grounding resistance, water).