• 제목/요약/키워드: Grounding accident

Search Result 44, Processing Time 0.132 seconds

Marine Accident Cause Investigation using M&S System (고도 정밀 M&S 시스템을 이용한 해난사고 원인규명)

  • Lee, Sang-Gab
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.36-37
    • /
    • 2014
  • It is necessary to develop highly sophisticated Modeling & Simulation (M&S) system for the scientific investigation of marine accident causes and for the systematic reproduction of accidental damage procedure. To ensure an accurate and reasonable prediction of marine accidental causes, such as collision, grounding and flooding, full-scale ship M&S simulations would be the best approach using hydrocode, such as LS-DYNA code, with its Fluid-Structure Interaction (FSI) analysis technique. The objectivity of this paper is to present three full-scale ship collision, grounding and flooding simulation results of marine accidents, and to show the possibility of the scientific investigation of marine accident causes using highly sophisticated M&S system.

  • PDF

Performance Evaluation of Protection against Electric Shocks for TT and TN Systems (TT, TN접지계통의 감전보호 성능평가)

  • Lee, Bok-Hee;Choi, Young-Chul;Yoo, Jae-Duk;Shin, Hee-Kyung;Yang, Soon-Man;Kim, Tae-Gi;Lee, Zu-Cheul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.315-318
    • /
    • 2009
  • Electric shock is the accident caused by the current through a person or animal's body. That is characterized by the physiological effects. In this paper, we evaluate performance of protection against electric shocks for TT and TN grounding systems which are used by a low voltage consumer nowadays. The performance of protection against electric shocks for TT grounding system is very excellent in equipotential area of the third class grounding, but the performance is poor outside the equipotential area. The performance of protection against electric shocks for TN grounding system is excellent because the potential difference is less than 50V. Accordingly, the performance of protection for TN grounding system is good as compared with that for TT grounding System.

  • PDF

A Study on High Impedance Grounding Protection for DC Power Supply System (DC 급전계통 고저항 지락보호에 대한 연구)

  • Lee, Kuk-Myoung;Kim, Byung-Hyun;So, Sun-Young;Kim, Hak-Lyun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.878-884
    • /
    • 2006
  • Grounding fault and short of the DC power supply systems are detected and protected by high-speed circuit breaker, linked breaking device, ground relay and fault selective device, all of which are installed and operated in substaions. however, there have been many cases in which the protective devices did not detect grounding of of the over head catenary systems on concrete support for an extended period of time. Such cases often cause severe damages to the supports with high grounding resistances. If grounding accidents occur repetitively, the earth current and the rise of earth potential can damage not only passenger and staff but also electric facilities and equipment, necessitating high cost and endeavor to restore. The following study points out various problems that can be occurred occur as a result of high impedance grounding accident, and proposes a new system which can protect and intercept them.

  • PDF

A study of grounding system design with economical efficiency in electric rolling stocks facilities (철도차량기지내에서의 경제성을 고려한 접지설계에 관한 연구)

  • Chang, Chin-Young;Kim, Jae-Moon;Kim, Yang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.6-9
    • /
    • 2009
  • Recently, there have been studied the importance of the grounding system, as electrical equipments installed in the building, such as intelligent building. The object of grounding of electrical facilities is to protect human and machine damage from the power supply interruption high voltage by use of the accident current dissipating into the ground. In this paper, we is proposed to design of grounding system with economical efficiency in electric rolling stocks facilities. To make efficient ground, ground potential rise must be controlled in the way of overall lowering and evenness instead of independent grounding method with respect to electrical facilities.

  • PDF

Transient Voltage Analysis of Low-Voltage Source Circuit inn Thermal Power Plant due to Grounding Potential Rise by Lightening (낙뢰침입에 의한 대지전위상승이 발전소 저압전원회로에 미치는 과전압 해석)

  • Yang, Byeong-Mo;Jeong, Jae-Kee;Min, Byeong-Wook;Lee, Jong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1644-1646
    • /
    • 1998
  • High-Smokestacks have been the symbol of the thermal power plant. Those cause the thermal power plant to be damaged by lightening for reaching several hundreds meter. In this paper, we investigated the accident of low-voltage source circuit due to grounding potential rise by lightening via high-smokestack in practically driving power plant, described examination into the cause and the impulse analysis. We analysed the transient voltage by EMTP(ElectroMagnetic Transient Program) via modeling the grounding system of power plant. This theoretical results coincided with practical accidental state. Therefore, it was verified that we could apply the grounding system of power plant and substation with the distribution-circuit analysis(EMTP).

  • PDF

Construction of Lightning Protection System for Railway Signaling Equipments (철도신호설비용 낙뢰방호장치의 건설)

  • Choi Kyu-Hyoung;Seo Seok-Chul;Choi Se-Wan
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1193-1198
    • /
    • 2004
  • This paper describes the lightning protection system for railway signaling equipments installed at subway car depots in Seoul metropolitan Rapid Transit Cooperation. Several measures for improving lightning protection performance are adopted; newly organized grounding system for neutral line of power system, rolling method to minimize damages induced by direct lightning strike, new measures to reduce voltage differences between the signaling equipments and the ground, and improvement of grounding system. The proposed system has greatly reduced the grounding resistance and also the voltage difference between the signaling equipments and the ground, and has prevented the accident related with lightning surges since it was installed. The proposed approach can be viewed as a useful alternative of dealing with lightning protection for railway signaling equipments.

  • PDF

A Study of Ground System improvement on Isolated Power Generation (독립 전원설비에서의 접지방법 개선에 관한 연구)

  • 류보혁;남택주;김정훈
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.96-102
    • /
    • 2001
  • In construction sites, portable generators and electrical equipments cause frequently electrical accidents due to the poor condition of their usage. However, there are very few technical guidelines on these equipments even though they have serious accident causing potentiality. In order to reduce such accidents in practical and economical, grounding methods are studied in this paper as the countermeasure of electrical accidents. Several Korean national standards and international standards regarding three grounding types are compared each other, and some prevention means of electrical accidents are reviewed in this study. This paper presents the most effective grounding methods by assuming the WCS with the isolated power systems.

  • PDF

A Study on the Measurement of Footing Resistance of Transmission Towers with Overhead Grounding wires (가공지선이 연결된 송전철탑의 탑각저항 측정에 관한 연구)

  • Lee, Won-Kyo;Choi, Jong-Kee;Lee, Young-Woo;Choi, In-Hyuk;Kim, Kyung-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.61-64
    • /
    • 2010
  • Footing Resistance of a 154 kV transmission towers in korea is commonly required to be less than 15 ohm to avoid lightning back-flashover accident. The periodic measurement of Footing Resistance is important to verify that the grounding performance of the towers has been maintained good. Towers are electrically connected in parallel with overhead grounding wire, therefore footing resistance of each tower will be measured after disconnecting the overhead ground wires from the towers. however, In this paper, three direct measurement methods of footing resistance are presented. There are very useful methods without disconnecting overhead ground wires from the tower under measurement. They are compared in KEPCO 154 kV transmission towers. The experimental results describe performances of them.

Fundamental Research on the Development of a Risk Based Decision Support System for Maritime Accident Response: Focused on Oil Tanker Grounding (위험도기반 해양사고 초기대응 지원 시스템 개발 기초연구: 유조선 좌초사고를 중심으로)

  • Na, Seong;Lee, Seung-Hyun;Choi, Hyuek-Jin
    • Journal of Navigation and Port Research
    • /
    • v.40 no.6
    • /
    • pp.391-400
    • /
    • 2016
  • A number of maritime accidents, and accident response activities, including the command and control procedures that were implemented at accident scenes, are analyzed to derive useful information about responding to maritime accidents, and to understand how the chain of events developed after the initial accident. In this research, a new concept of a 'risk based accident response support system' is proposed. In order to identify the event chains and associated hazards related to the accident response activities, this study proposes a 'Brainstorming technique for scenario identification', based on the concept of the HAZID technique. A modified version of Event Tree Analysis was used for quantitative risk analysis of maritime accident response activities. PERT/CPM was used to analyze accident response activities and for calculating overall (expected) response activity completion time. Also, the risk based accident response support system proposed in this paper is explained using a simple case study of risk analysis for oil tanker grounding accident response.

A Study on the Decreasing Method of Electric Shock Accident in the Construction Industry (건설업에서의 감전재해 감소 방안을 위한 연구)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.28-33
    • /
    • 2014
  • Regarding the characteristics of fatal electric shock accident during the past 10 years, fatalities occurred more frequently in July & August, and AM 10-12 PM & 14-16. Also, the electric shock accident is occurred more frequently in the age group from 30 to 40. Especially, the fatal electric shock accident in construction industry covered more than half of total industry. Therefore, it is strongly requested for the protection technology of an electric shock from the low voltage electric path, grounding method and workers. The aim of this study is to propose the policy about the equipment performance standards and/or worker's safety standards to revise the standards for preventing electric shock accidents on safety workings.