• Title/Summary/Keyword: Ground-structure interface

Search Result 50, Processing Time 0.03 seconds

Evaluation of Roofing Potential at the Ground-structure Interface (지반-구조물 경계면의 루핑 포텐셜 평가)

  • Park, Jeongman;Kim, Kanghyun;Shin, Jongho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.3
    • /
    • pp.25-33
    • /
    • 2018
  • Piping is one of the most frequently occurring collapse type of a levee, and is often caused by roofing (backward erosion piping) at the ground-structure interface. Roofing is generally evaluated using creep ratio. However, creep ratio does not take into account the characteristics of the ground-structure interface. In this study, the roofing risk was investigated by using model test and numerical analysis considering the ground-structure interface characteristics. In the model test, it was confirmed that the piping potential decreased as the interface roughness increased, and this was applied to the numerical analysis. Existing numerical methods can not adequately simulate the particle behavior at the ground-structure interface because only the water level difference is considered. In this paper, particle behavior at the interface was investigated by performing seepage analysis and then, carrying out particle analysis technique simulating the boundary condition of the ground-structure interface. Analysis results have shown that the roofing resistance decreases as the ground-structure interface roughness decreases.

Sliding Conditions at the Interface between Soil and Underground Structure (지반과 지하구조물 경계의 미끄러짐 조건에 관한 연구)

  • 김대상
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.7-11
    • /
    • 2002
  • By focusing on the resonant vibration mode of soil-underground structure system, this paper obtained dynamic soil stiffness and easy sliding conditions at the interface between soil and underground structure. Multi-step method is employed to isolate two primary causes of soil-structure interaction. Mohr-Coulomb criterion is used to determine the threshold level of the sliding. To find out the conditions the interface slides easily, parametric studies are performed about the factors governing sliding, which are the size and location of underground structures, ground condition, the configuration of surface deposit and interface friction coefficients.

Dynamic Analysis of Structure-Fluid-Soil Interaction Problem of a Bridge Subjected to Seismic-Load Using Finite Element Method (유한요소법을 이용한 지진하중을 받는 교량의 구조물-유체-지반 동적 상호작용해석)

  • You, Hee-Yong;Park, Young-Tack;Lee, Jae-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.4
    • /
    • pp.67-75
    • /
    • 2008
  • In construction facilities such as bridges, the fluid boundary layer(or water film) is formed at the structure-soil interface by the inflow into the system due to rainfall or/and rising ground-water. As a result, the structure-soil interaction(SSI) state changes into the structure-fluid-soil interaction(SFSI) state. In general, construction facilities may be endangered by the inflow of water into the soil foundation. Thus, it is important to predict the dynamic SFSI responses accurately so that the facilities may be properly designed against such dangers. It is desired to have the robust tools of attaining such a purpose. However, there has not been any report of a method for the SFSI analyses. The objective of this study is to propose an efficient method of finite element modelling using the new interface element named hybrid interface element capable of giving reasonable predictions of the dynamic SFSI response. This element enables the simulation of the limited normal tensile resistance and the tangential hydro-plane behaviour, which has not been preceded in the previous studies. The hybrid interface element was tested numerically for its validity and employed in the analysis of SFSI responses of the continuous bridge subjected to seismic load under rainfall or/and rising ground-water condition. It showed that dynamic responses of the continuous bridge resting on direct foundation may be amplified under rainfall condition and consequently lead to significant variation of stresses.

Influence of wall flexibility on dynamic response of cantilever retaining walls

  • Cakir, Tufan
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.1-22
    • /
    • 2014
  • A seismic evaluation is made of the response to horizontal ground shaking of cantilever retaining walls using the finite element model in three dimensional space whose verification is provided analytically through the modal analysis technique in case of the assumptions of fixed base, complete bonding behavior at the wall-soil interface, and elastic behavior of soil. Thanks to the versatility of the finite element model, the retained medium is then idealized as a uniform, elastoplastic stratum of constant thickness and semi-infinite extent in the horizontal direction considering debonding behavior at the interface in order to perform comprehensive soil-structure interaction (SSI) analyses. The parameters varied include the flexibility of the wall, the properties of the soil medium, and the characteristics of the ground motion. Two different finite element models corresponding with flexible and rigid wall configurations are studied for six different soil types under the effects of two different ground motions. The response quantities examined incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that the wall flexibility and soil properties have a major effect on seismic behavior of cantilever retaining walls and should be considered in design criteria of cantilever walls. Furthermore, the results of the numerical investigations are expected to be useful for the better understanding and the optimization of seismic design of this particular type of retaining structure.

Highly Miniaturized On-Chip $180^{\circ}$ Hybrid Employing Periodic Ground Strip Structure for Application to Silicon RFIC

  • Yun, Young
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.13-17
    • /
    • 2011
  • A highly miniaturized on-chip $180^{\circ}$ hybrid employing periodic ground strip structure (PGSS) was realized on a silicon radio frequency integrated circuit. The PGSS was placed at the interface between $SiO_2$ film and silicon substrate, and it was electrically connected to top-side ground planes through the contacts. Owing to the short wavelength characteristic of the transmission line employing the PGSS, the on-chip $180^{\circ}$ hybrid was highly miniaturized. Concretely, the on-chip $180^{\circ}$ hybrid exhibited good radio frequency performances from 37 GHz to 55 GHz, and it was 0.325 $mm^2$, which is 19.3% of a conventional $180^{\circ}$ hybrid. The miniaturization technique proposed in this work can be also used in other fields including compound semiconducting devices, such as high electron mobility transistors, diamond field effect transistors, and light emitting diodes.

Dynamic responses of structures with sliding base

  • Tsai, Jiin-Song;Wang, Wen-Ching
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.63-76
    • /
    • 1998
  • This paper presents dynamic responses of structures with sliding base which limits the translation of external loads from ground excitation. A discrete element model based on the discontinuous deformation analysis method is proposed to study this sliding boundary problem. The sliding base is simulated using sets of fictitious contact springs along the sliding interface. The set of contact spring is to translate friction force from ground to superstructure. Validity of the proposed model is examined by the closed-form solutions of an idealized mass-spring structural model subjected to harmonic ground excitation. This model is also applied to a problem of a three-story structural model subjected to the ground excitation of 1940 El Centro earthquake. Analyses of both sliding-base and fixed-base conditions are performed as comparisons. This study shows that using this model can simulate the dynamic response of a sliding structure with frictional cut-off quite accurately. Results reveal that lowering the frictional coefficient of the sliding joint will reduce the peak responses. The structure responses in little deformation, but it displaces at the end of excitation.

A Study on the Frame Sensor Modeling Using Standard Interface (표준 인터페이스를 적용한 프레임 센서 모델링에 관한 연구)

  • Kwon, Wonsuk;Choi, Sunyong;Lee, Yongwoong
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.75-81
    • /
    • 2014
  • Until recently, photogrammetric applications for processing the satellite images and remotely sensed data have been used in different structure of functions and interfaces for sensor modeling by each developer. Thus, a standardized utilization procedure was necessary to solve the problems, such as expandability, cost, inefficiency of sources which were resulted from different approaches. Therefore, National Geospatial Intelligence Agency (NGA) provided unified interfaces by developing Community Sensor Model (CSM) to sensor models in same way. In this study, we suggested the method of design and analyzed main functions needed modeling for the frame sensor using CSM Application Program Interface (API) provided by NGA. We also applied the designed structure to the modeling. The implemented CSM was verified by groundToImage and imageToGround. In the future, the active R&D is expected with using CSM due to the cost saving effect of software development and remarkable expandability of sensor.

Behaviour of a Single Pile in Heaving Ground Due to Ground Excavation (지하터파기로 인해 융기(Heaving)가 발생한 지반에 근입된 단독말뚝의 거동)

  • Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • A finite element analysis has been conducted to clarify the behaviour of a single pile in heaving ground related to ground excavation. The numerical analysis has included soil slip at the pile-soil interface, analysing the interaction between the pile and the clay has been studied. The study includes the upward movement of the pile, the relative shear displacement between the pile and the soil and the shear stresses at the interface and the axial force on the pile. In particular, the shear stress transfer mechanism at the pile-soil interface related to a decrease in the vertical soil stress has been rigorously analysed. Due to the reductions in the vertical soil stress after excavation, the relative shear displacement and the shear stress along the pile have been changed. Upward shear stress developed at most part of the pile (Z/L=0.0-0.8), while downward shear stress is mobilized near the pile tip (Z/L=0.8-1.0) resulting in tensile force on the pile, where Z is the pile location and L is the pile length. Some insights into the pile behaviour in heaving ground analysed from the numerical analyses has been reported.

A Study of Design and Analysis on the High-Speed Serial Interface Connector (고속 직렬 인터페이스 커넥터의 설계 및 분석에 대한 연구)

  • Lee, Hosang;Shin, Jaeyoung;Choi, Daeil;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1084-1096
    • /
    • 2016
  • This paper presents method of design and analysis of a high-speed serial interface connector with a data rate of 12.5 Gbps. A high-speed serial interface connector is composed of various material and complex structures. It is very difficult to match the impedance of each discontinuous portion of connector. Therefore, this paper proposes the structure of a connector line that be simplified a connector. In the structure of proposed connector line, this research presents a method for extracting R, L, C and G parameters, analyzing the differential mode impedance, and minimizing the impedance discontinuity using time domain transmissometry and time domain reflectometry. This paper applies the proposed methods in the connector line to the high-speed serial interface connector. The proposed high-speed serial interface connector, which consists of forty-four pins, is analyzed signal transmission characteristics by changing the width and spacing of the four pins. According to the analysis result, as the width of the ground pin increases, the impedance decreases slightly. And as the distance between the ground pin and the signal pin increases, the impedance increases. In addition, as the width of the signal pin increases, the impedance decreases. And as the distance between the signal pin and the signal pin increases, the impedance decreases. The impedance characteristic of initial connector presents ranges from 96 to $139{\Omega}$. Impedance characteristic after applying the structure of proposed connector is shown as a value between 92.6 to $107.5{\Omega}$. This value satisfies the design objective $100{\Omega}{\pm}10%$.

Layer Interface Analysis of Multi-Layered Soils by Numerical Methods (수치해석에 의한 다층토 압밀의 경계요소면 해석)

  • 김팔규;류권일;구기욱;남상규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.349-356
    • /
    • 1999
  • In general, the term soft ground includes clayey soils, which have large compressibility and small shear resistance due to the external load. All process of consolidation in compressible soils can be explained in terms of a transfer of load from an incompressible pore-water to a compressible soil structure. Therefore, one of the most important subjects about the characteristics of the time-dependent consolidation of the clay foundation by the change of load may be the presumption of the final settlement caused by consolidation and the degree of consolidation according to the time. The problems of discontinuous layer interface are very important in the algorithm and programming for the analysis of multi-layered soils using a numerical analysis, finite difference method. Better results can be obtained by the Process for discontinuous layer interface, since it can help consolidation analysis to model the actual ground. The purpose of this paper Provides an efficient computer algorithm based on numerical analysis using finite difference method(F.D.M.) which account for multi-layered soils to determine the degree of consolidation and excess pore pressures relative to time and positions more realistically.

  • PDF