• Title/Summary/Keyword: Ground vibrations

Search Result 166, Processing Time 0.02 seconds

A study on Measurement of Blast-Induced Ground Vibrations in Urban Areas (도심지(都心地) 발파(發破)에서의 지반진동(地盤振動) 측정(測定)에 관(關)한 연구(硏究))

  • Kim, Woong-Soo;Lee, Kyoung-Woon;Lim, Han-Uk;Suh, Baek-Soo
    • Journal of Industrial Technology
    • /
    • v.3
    • /
    • pp.17-26
    • /
    • 1983
  • The blast vibrations were measured from 10 places through Seoul subway area to study their effects on the structures and to establish the safe blasting limits. For purpose of the present study, particle velocity only was recorded and analyzed, because it correlated most directly with damage. The results are as follows: (1) The proagation equation, $V=K(D/W^{1/3})^{-n}$ was obtained. Typical values could be found for n range from 1.7 to 1.5 and for k range from 48 to 138. (2) From the relationship between schmidt hammer rebound hardness and uniaxial compressive strength, $Sc=0.514{\times}(S.H)^{0.23}$, the compressive strength at any area can be assumed. (3) The use of AN-FO and other explosives with low detonation pressure may reduce vibration levels generated.

  • PDF

A Review on the Effects of Earthborne Vibrations and the Mitigation Measures

  • Nam, Boo Hyun;Kim, Jinyoung;An, Jinwoo;Kim, Bumjoo
    • International Journal of Railway
    • /
    • v.6 no.3
    • /
    • pp.95-106
    • /
    • 2013
  • Earthborne vibrations are induced by construction operation such as pile driving, roadbed compaction, and blasting and also by transit activities such as truck and trains. The earthborne vibration creates the stress waves traveling outward from the source and can structurally damage nearby buildings and structures in the forms of direct damage to structure and damage due to dynamic settlement. The wave propagation characteristics depends on impact or vibration energy, distance from the source, and soil characteristics. The aim of this paper is to provide a comprehensive review on the mechanistic of earthborne vibration and the current practice of vibration control and mitigation measures. The paper describes the state of knowledge in the areas of: (1) mechanics of earthborne vibration, (2) damage mechanism by earthborne vibration, (3) calculation, prediction of ground vibration, (4) the criteria of vibration limits, (5) vibration mitigation measures and their performance, and (6) the current practice of vibration control and mitigation measures.

Application of Full-Face Round by Sequential Blasting Machine in Tunnel Excavation (터널굴착에서 다단식 발파기에 의한 전단면 발파의 적용성 연구)

  • 조영동;이상은;임한욱
    • Explosives and Blasting
    • /
    • v.13 no.1
    • /
    • pp.20-31
    • /
    • 1995
  • Many methods and techniques to reduce ground vibrations are well known. Some of them are to adopt electric milisecond detonators with a sequential blasting machine or an initiating system with an adequate number of delay intervals. The types of electric detonators munufactured in Korea include instantaneous, decisecond and milisecond delays byt numbers of delay intervals are only limite from No.1 to No.20 respectively. It is not sufficient to control accurately milisecond time with these detonators in tunnel excavation. Sequential fire time refers to adding an external time delay to a detonators norminal firing time to obtain sequential initiation and it is determined by sequential timer setting. To reduce the vibration level, sequential blasting machine with decisecond detonatore was adopted. A total of 134 blasting was recorded at various sites. Blast-to-structure distances ranged from 20.3 to 42.0 meter, where charge weight varied from 0.25 to 0.75 kg per delay. The results can be summarized as follow : 1. The effects of sequential blasting machine on the vibration level are discussed. The vibration level by S.B.M. are decreased approximately 14.38~18.05 to compare to level of conventional blasting and cycle time per round can be saved. 2. The empirical equations of particle velocity were obtained in S,B.M. and conventional blastin. $V=K(D/W^{1/3})-n$. where the values for n and k are estimated to be 1.665 to 1.710 and 93.59 to 137 respectively. 3. The growth of cracks due to vibrations are found but the level fall to within allowable value.

  • PDF

Investigation on Forced Vibration Behavior of WIG Craft Main Wing Structure Excited by Propulsion System

  • Kong, Chang-Duk;Yoon, Jae-Huy;Park, Hyun-Bum
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.810-812
    • /
    • 2008
  • Previously study on structural design of the main wing of the twenty-seat class WIG(Wing in Ground Effect) craft. In the final design, three spars construction was selected for safety in the critical flight load, and the Carbon-Epoxy material was selected for lightness and structural stability. In this study, the forced vibration analysis was performed on the composite main wing structure of the twenty-seat class WIG craft with two-stroke pusher type reciprocating engine. The vibration analysis based on the finite element method was performed using a commercial FEM code, MSC/NASTRAN. Excitations for the frequency response analysis were assumed as the H-mode(horizontal mode), the V-mode(vertical mode) and the X-mode(twisted mode) which are typical main vibration modes of engine. And excitations for the transient response analysis were assumed as the L-mode(longitudinal mode) with the oscillating propeller thrust which occurs in operation. According to the result of forced vibration analysis, structural design was modified to reduce the vibrations.

  • PDF

Compound damping cable system for vibration control of high-rise structures

  • Yu, Jianda;Feng, Zhouquan;Zhang, Xiangqi;Sun, Hongxin;Peng, Jian
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.641-652
    • /
    • 2022
  • High-rise structures prone to large vibrations under the action of strong winds, resulting in fatigue damage of the structural components and the foundation. A novel compound damping cable system (CDCS) is proposed to suppress the excessive vibrations. CDCS uses tailored double cable system with increased tensile stiffness as the connecting device, and makes use of the relative motion between the high-rise structure and the ground to drive the damper to move back-and-forth, dissipating the vibration mechanical energy of the high-rise structure so as to decaying the excessive vibration. Firstly, a third-order differential equation for the free vibration of high-rise structure with CDCS is established, and its closed form solution is obtained by the root formulas of cubic equation (Shengjin's formulas). Secondly, the analytical solution is validated by a laboratory model experiment. Thirdly, parametric analysis is conducted to investigate how the parameters affect the vibration control performance. Finally, the dynamic responses of the high-rise structure with CDCS under harmonic and stochastic excitations are calculated and its vibration mitigation performance is further evaluated. The results show that the CDCS can provide a large equivalent additional damping ratio for the vibrating structures, thus suppressing the excessive vibration effectively. It is anticipated that the CDCS can be used as a good alternative energy dissipation system for vibration control of high-rise structures.

Nonlinear optimal control for reducing vibrations in civil structures using smart devices

  • Contreras-Lopez, Joaquin;Ornelas-Tellez, Fernando;Espinosa-Juarez, Elisa
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.307-318
    • /
    • 2019
  • The frequently excessive vibrations presented in civil structures during seismic events or service conditions may result in users' discomfort, or worst, in structures failure, producing economic and even human casualties. This work contributes in proposing the synthesis of a nonlinear optimal control strategy for semiactive structural control, with the main characteristic that the synthesis considers both the structure model and the semiactive actuator nonlinear dynamics, which produces a nonlinear system that requires a nonlinear controller design. The aim is to reduce the unwanted vibrations in the response of civil structures, by means of intelligent fluid semiactive actuator such as the Magnetorheological Damper (MRD), which is a device with a low level of power consumption. The civil structures for which the proposed control methodology can be applied are those admitting a state-dependent coefficient factorized representation model, such as buildings, bridges, among others. A scaled model of a three storey building is analyzed as a case study, whose dynamical response involves displacement, velocity and acceleration of each one of the storeys, subjected to the North-South component of the September 19th., 2017, Puebla-Morelos (7.1M), Mexico earthquake. The investigation rests on comparing the structural response over time for two different conditions: with no control device installed and with one MRD installed between the first floor and the ground, where a nonlinear optimal signal for the MRD input voltage is determined. Simulation results are presented to show the effectiveness of the proposed controller for reducing the building's dynamical response.

VSimulators: A New UK-based Immersive Experimental Facility for Studying Occupant Response to Wind-induced Motion of Tall Buildings

  • Antony Darby;James Brownjohn;Erfan Shahabpoor;Kaveh Heshmati
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.347-362
    • /
    • 2022
  • Current vibration serviceability assessment criteria for wind-induced vibrations in tall buildings are based largely on human 'perception' thresholds which are shown not to be directly translatable to human 'acceptability' of vibrations. There is also a considerable debate about both the metrics and criteria for vibration acceptability, such as frequency of occurrence or peak vs mean vibration, and how these might vary with the nature of the vibration. Furthermore, the design criteria are necessarily simplified for ease of application so cannot account for a range of environmental, situational and human factors that may enhance or diminish the impact of vibrations on serviceability. The dual-site VSimulators facility was created specifically to provide an experimental platform to address gaps in understanding of human response to building vibration. This paper considers how VSimulators can be used to inform general design guidance and support design of specific buildings for habitability, in terms of vibration, which allow engineers and clients to make informed decisions with regard to sustainable design, in terms of energy and financial cost. This paper first provides a brief overview of current vibration serviceability assessment guidelines, and the current understanding and limitations of occupants' acceptability of wind-induced motion in tall buildings. It then describes how the dual-site VSimulators facility at the Universities of Bath and Exeter can be used to assess the effects of motion and environment on human comfort, wellbeing and productivity with examples of how the facility capabilities have been used to provide new, human experience based experimental research approaches.

Propagation Characteristics of Ground Vibration Caused by Blast Hole Explosion of High Explosives in Limestone (고위력 폭약의 석회암 내 장약공 폭발에 의한 지반진동 전파특성에 관한 연구)

  • Gyeong-Gyu Kim;Chan-Hwi Shin;Han-Lim Kim;Ju-Suk Yang;Sang-Ho Bae;Kyung-Jae Yun;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.4
    • /
    • pp.17-28
    • /
    • 2023
  • Recently, the utilization of underground space for research facilities and resource development has been on the rise, expanding development from shallow to deep underground. The establishment of deep underground spaces necessitates a thorough examination of rock stability under conditions of elevated stress and temperature. In instances of greater depth, the stability is influenced not only by the geological structure and discontinuity of rock but also by the propagation of ground vibrations resulting from earthquakes and rock blasting during excavation, causing stress changes in the underground cavity and impacting rock stability. In terms of blasting engineering, empirical regression models and numerical analysis methods are used to predict ground vibration through statistical regression analysis based on measured data. In this study, single-hole blasting was conducted, and the pressure of the blast hole and observation hole and ground vibration were measured. Based on the experimental results, the blast pressure blasting vibration at a distance, and the response characteristics of the tunnel floor, side walls, and ceiling were analyzed.

A Study on Predominant Periods and Attenuation Characteristics of Ground Motion (지반 탁월주기와 지반 운동특성에 관한 연구)

  • Kim, So-Gu;Cha, Jeong-Sik;Jeong, Hyeong-Sik
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.139-156
    • /
    • 1995
  • A set of field investigations was performed to estimate accurately the predominant periods of seismic 8round motions and the attenuation characteristics of the seismic ground vibration. Predominant periods of ground motions were estimated from the measurement of the continuous microseismic vibratins of certain periods, inherent in the ground and in the buildings, utilizing the high sensitivity digital velocity seismometer consisting of 3-component geophones and a digital seismograph. Estimated predominant periods of microseismic vibraion of the ground(measured on'the ground surface) and the building (measured on the second floor) were in the range of 0.18~0.235 sec. and 0.26~0.31 sec. respectively. The subsurface structure of the site ground was surveyed by the seismic refraction method utilizing the digital seismicwave probing system. The ground structure was found to be a two-layered system : an upper top soil layer of 7m in thickness with the P-wave velocity of 662m1sec and a lower layer of silty-clayey soils with the P -wave velocity of 2210m1 sec. The attenuation characteristics of the seismic ground vibrations were determined by the amplitude decay measurement method us;ng the Seisgun, which produces strong artificial seismic energy. Measured spatial attenuation coefficients of the ground vibration in vertical(Z) longitudinal(X), transverse(Y) direction were 0.1137, 0.0025, and 0.0290 respectively. Estimated Spartial QP's (inverse of the specific dissipation constant w.r.t. shear waved of X, Y, and Z directions were in the range of 5.913~7.575, 32.371~41.452, 2.794~3.579 re spectively. This indicates that aseimic design of the structures on the site should take stronger consideration regarding the earthquake resistance characteristics of the structures against longitudinal ground motion.

  • PDF

Consideration on Limitations of Square and Cube Root Scaled Distances in Controled Blast Design (제어발파설계에서 자승근 및 삼승근 환산거리 기법의 적용한계에 대한 고찰)

  • Choi, Byung-Hee;Ryu, Chang-Ha;Jeong, Ju-Hwan
    • Explosives and Blasting
    • /
    • v.28 no.1
    • /
    • pp.27-39
    • /
    • 2010
  • Blast design equations based on the concept of scaled distances can be obtained from the statistical analysis on measured peak particle velocity data of ground vibrations. These equations represents the minimum scale distance of various recommendations for safe blasting. Two types of scaled distance widely used in Korea are the square root scaled distance (SRSD) and cube root scaled distance (CRSD). Thus, the design equations have the forms of $D/\sqrt{W}{\geq}30m/kg^{1/2}$ and $D/\sqrt[3]{W}{\geq}60m/kg^{1/3}$ in the cases of SRSD and CRSD, respectively. With these equations and known distance, we can calculate the maximum charge weight per delay that can assure the safety of nearby structures against ground vibrations. The maximum charge weights per delay, however, are in the orders of $W=O(D^2)$ and $W=O(D^3)$ for SRSD and CRSD, respectively. So, compared with SRSD, the maximum charge for CRSD increases without bound especially after the intersection point of these two charge functions despite of the similar goodness of fits. To prevent structural damage that may be caused by the excessive charge in the case of CRSD, we suggest that CRSD be used within a specified distance slightly beyond the intersection point. The exact limit is up to the point, beyond which the charge difference of SRSD and CRSD begins to exceed the maximum difference between the two within the intersection point.