Consideration on Limitations of Square and Cube Root Scaled Distances in Controled Blast Design

제어발파설계에서 자승근 및 삼승근 환산거리 기법의 적용한계에 대한 고찰

  • Received : 2010.06.10
  • Accepted : 2010.06.25
  • Published : 2010.06.30

Abstract

Blast design equations based on the concept of scaled distances can be obtained from the statistical analysis on measured peak particle velocity data of ground vibrations. These equations represents the minimum scale distance of various recommendations for safe blasting. Two types of scaled distance widely used in Korea are the square root scaled distance (SRSD) and cube root scaled distance (CRSD). Thus, the design equations have the forms of $D/\sqrt{W}{\geq}30m/kg^{1/2}$ and $D/\sqrt[3]{W}{\geq}60m/kg^{1/3}$ in the cases of SRSD and CRSD, respectively. With these equations and known distance, we can calculate the maximum charge weight per delay that can assure the safety of nearby structures against ground vibrations. The maximum charge weights per delay, however, are in the orders of $W=O(D^2)$ and $W=O(D^3)$ for SRSD and CRSD, respectively. So, compared with SRSD, the maximum charge for CRSD increases without bound especially after the intersection point of these two charge functions despite of the similar goodness of fits. To prevent structural damage that may be caused by the excessive charge in the case of CRSD, we suggest that CRSD be used within a specified distance slightly beyond the intersection point. The exact limit is up to the point, beyond which the charge difference of SRSD and CRSD begins to exceed the maximum difference between the two within the intersection point.

측정된 지반진동의 최대입자속도 자료에 대한 통계분석을 통해 환산거리 개념에 기초한 제어발파 설계조건식은 구할 수 있다. 이들 설계조건식들은 안전발파를 위한 다양한 허용기준에 따라 사용할 수 있는 환산거리의 최소값을 정의하는 형태로 되어 있다. 국내에서 널리 사용되는 환산거리에는 자승근 환산거리(SRSD)와 삼승근 환산거리(CRSD)의 두 가지가 있다. 따라서 SRSD와 CRSD의 설계조건식들은 각각 $D/\sqrt{W}{\geq}30m/kg^{1/2}$$D/\sqrt[3]{W}{\geq}60m/kg^{1/3}$의 형태가 된다. 제어발파 설계 시에는 이들 조건식들과 이격거리를 알고 있으므로 지반진동에 대해 구조물의 안정을 보장할 수 있는 최대 지발당장약량를 계산할 수 있다. 그러나 SRSD와 CRSD의 최대 지발당장약량은 각각 $W=O(D^2)$$W=O(D^3)$의 차원으로 나타난다. 따라서 SRSD에 비해 CRSD의 장약량은 두 회귀식의 유사한 적합도에도 불구하고 두 함수의 교점을 지나면 기하급수적으로 증가하게 된다. 따라서 본 논문에서는 CRSD의 지나치게 많은 장약량으로 인해 발생할 지도 모를 구조물의 피해를 방지하기 위해 CRSD는 어떤 특정한 거리 이내에서만 사용하도록 제한한다. 그 정확한 한계는 SRSD와 CRSD의 장약량 차가 교점 이내에서의 양자 간의 최대차를 초과하기 시작하는 점까지이다.

Keywords

References

  1. 최병희, 류동우, 선우춘, 박상봉, 권종찬, 2007, 미고결 암층에서의 진동저감을 위한 기폭패턴의 설계 및 적용, 2007 한국암반공학회 특별 심포지엄 논문집, pp. 470-485.
  2. Ambraseys, N.R. and A.J. Hendron, 1968, Dynamic Behavior of Rock Masses, Rock Mechanics in Engineering Practice (K.G. Stagg and O.C. Zienkiewicz, eds.), John Wiley & Sons, Inc., London, pp. 203-227.
  3. Atlas Power Company, 1987, Explosives and rock blasting, Atlas Power Company, pp. 344-348.
  4. Attewell, P.B., I.W. Farmer and D. Haslam, 1965, Prediction of Ground Vibration Parameters from Major Quarry Blasts, Mining and Minerals Engineering, Dec., pp. 621-626.
  5. Bhandari, S., 1997, Engineering Rock Blasting Operations, A.A. Balkema, Rotterdam, Brookfield, pp. 302-304.
  6. Blair, B.E. and W.I. Duvall, 1954, Evaluation of Gages for Measuring Displacement, Velocity and Acceleration of Seismic Pulses, USBM RI 5073, pp. 21.
  7. Davies, B., I.W. Farmer and P.B. Attewell, 1964, Ground Vibration from Shallow Subsurface Blasts, The Engineer, Mar. 7, pp. 553-559.
  8. Devine, J.F., 1962, Vibration Levels from Multiple Holes per Delay Quarry Blasts, Earthquake Notes, Vol. XXXIII, Sep. pp. 32-39.
  9. Devine, J.F. and W.I. Duvall, 1963, Effect of Charge Weight on vibration Levels for Millisecond Delayed Quarry blasts, Earthquake Notes, Vol. XXXIV, Jun. pp. 17-24.
  10. Dowding, C.H., 1971, Response of Buildings to Ground Vibrations Resulting from Construction Blasting, Ph.D. Thesis, Univ. of Illinois at Urbana Champaign, pp. 204.
  11. Duvall, W.I. and B. Petkof, 1959, Spherical Propagation of Explosion-Generated Strain Pulses in Rock, USBM RI 5483, pp.1-20.
  12. Ghosh, A. and J.J.K. Daemen, 1983, A Simple New Vibration Predictor (Based on Wave Propagation Laws), 24th US Symp. on Rock Mech., Texas, pp. 151-157.
  13. Gustafsson, R., 1973, Swedish Blasting Technique, SPI, Gothenburg, Sweden, pp. 211-221.
  14. Habberjam, J.M. and J.T. Whetton, 1952, On the Relation between Seismic Amplitude and Charge of Explosive Fired in Routine Blasting Operation, Geophysics Vol. 17, No. 1, pp. 116-128. https://doi.org/10.1190/1.1437728
  15. Langefors, U. and B. Kihlstrom, 1963, The Modern Technique of Rock Blasting, 3rd. ed., John Wiley & Sons Inc., New York, pp. 285-288.
  16. Morris, G., 1950, Vibrations due to Blasting and Their Effects on Building Structure, The Engineer, London, pp. 394-395.
  17. Nicholls, H.R., C.F. Johnson and W.I. Duvall, 1971, Blasting Vibrations and Their Effects on Structures, USBM Bulletin 656, pp. 105.
  18. Pal Roy, P., 1991, Prediction and Control of Ground Vibrations due to Blasting, Colliery Gaurdian 239(7), pp. 215-210.
  19. Siskind, D.E., M.S. Stagg, J.W. Kipp and C.H. Dowding, 1980, Structure Response and Damage Produced by Ground Vibration from Surface Mine Blasting, USBM RI 8507, pp. 9-17.
  20. Siskind, D.E., 2000, Vibrations from Blasting, ISEE, Cleveland, OH USA, pp. 17-28.
  21. Snodgrass, J.J. and D.E. Siskind, 1974, Vibrations from Underground Blasting, USBM RI 7937, pp. 31.