• 제목/요약/키워드: Ground system

검색결과 6,383건 처리시간 0.034초

Research on Ground Temperature Restoration Characteristics of Large-Scale Ground Source Heat Pump System

  • Zhang, Xu;Liu, Jun;Gao, Jun;Li, Kuishan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권4호
    • /
    • pp.109-116
    • /
    • 2008
  • Ground temperature restoration characteristics are the crucial factors to evaluate whether a ground source heat pump system can keep long time steady operation. They are mainly dependent on soil thermal properties, layout of pile group, operation/shutoff ratio, cooling/heating load, thermal imbalance ratio and so on. On the one hand, several types of vertical pile foundation heat exchangers are intercompared to determine the most efficient one by performance test and numerical method. On the other hand, according to the layout of pile group of a practical engineering and running conditions of a GSHP system in Shanghai, the temperature distribution during a period of five years is numerically studied. The numerical results are analyzed and are used to provide some guidance for the design of large-scale GSHP system.

매립토층에서 CGS에 의한 지반개량특성에 관한 연구 (Characteristics of Ground Improvement by Compaction Grouting System in Filled Ground)

  • 천병식;여유현;정영교;정완균;정의원;김우종
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.425-432
    • /
    • 2001
  • Compaction Grouting System, the method which makes ground compact by injection of low slump mortar, Is widely used for reinforcement of soft ground, restoration of structures happened differential settlement, underpinning and restoration of damaged dam core. The quantitive analysis of ground improvement for this method has not performed yet. So, design parameters about thls method must be studied through performance of CGS in various types of soil to make CGS adaptable widely. In this study PBT, SPT and field density test were performed for analysis of the characteristics of ground improvement and pressuremeter and inclinometer were installed for analysis of the characteristics of compaction in adjacent ground. In this paper, denoted much effects for filled ground that increasing of the bearing capacity, confirming the displacement of adjacent ground and the effective radius of injection.

  • PDF

연약지반 깊은 굴착에서 지보재 및 지반 파괴 사례 연구 (Case Study of Ground and Supporting System Failure in Soft Ground Deep Excavation)

  • 김성욱;한병원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.537-544
    • /
    • 2005
  • We find out many soft ground deep excavation cases where results of careless overexcavation accelerate the advance of loosening zone of adjacent ground, bucklings of struts and bottom heaves happen due to delayed supporting time. This article introduces a soft ground deep excavation case where steel pipe sheet piles were used with struts as an earth retaining system. There were 2 times of buckling in the supporting system and heaving of bottom ground due to overexcavation and insufficient penetration depth of the steel pipe sheet piles. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

Characteristic Analysis of HTS EDS System with Various Ground Conductors

  • Bae, Duck-Kweon;Ko, Tae-Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권2호
    • /
    • pp.21-24
    • /
    • 2010
  • This paper deals with numerical analysis on a high-$T_c$ superconducting (HTS) electrodynamic suspension (EDS) simulator according to the variation of the ground conductor conditions. Because the levitation force of EDS system is formed by the magnetic reaction between moving magnets and fixed ground conductors, the distribution of the magnetic flux on a ground conductor plays an important role in the determining of the levitation force level. The possible way to analyze HTS EDS system was implemented with 3D finite element method (FEM) tool. A plate type ground conductor generated stronger levitation force than ring type ground conductor. Although the outer diameter of Ring3 (335 mm) was larger than that of Ring2 (235 mm), the levitation force by Ring2 was stronger than that by Ring3. Considering the results of this paper, it is recommended that the magnetic flux distribution according to the levitation height and magnet current should be taken into account in the design of the ground conductors.

A STUDY ON THE CORRELATION BETWEEN GROUND SUBSIDENCE AREA NEAR ABANDONED UNDERGROUND COAL MINE AND GEOPHYSICAL PROSPECTING DATA USING GIS

  • Kim Ki-Dong;Choi Jong-Kuk;Won Joong-Sun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.325-328
    • /
    • 2005
  • To estimate presumptive local ground subsidence area near Abandoned Under ground Coal Mine(AUCM) at Samcheok city in Korea, the geological properties of existing ground subsidence area and the geophysical prospecting data were analyzed using GIS. The electrical resistivity survey and seismic reflection survey database were constructed from investigation reports and factors which are related with ground subsidence such as geological map, topological map, land use map, lineament map, groundwater level, RMR (Rock Mass Rating), mining tunnel map and slope database were constructed also to make a comparative study of each parameters. As a result of the spatial analysis of existing ground subsidence area, 9 major factors causing ground subsidence were extracted and a connection between the structure of underground and the ground subsidence was determined from the analysis of geophysical prospecting data. The estimation of presumptive ground subsidence area was performed using the correlation between the result from neural network analysis of 9 factors and the scrutiny of geophysical prospecting data.

  • PDF

광대역 접지임피던스 측정기의 설계 및 제작 (Design and Fabrication of a Wideband Ground Impedance Meter)

  • 길경석;박대원;장운용;한주섭;길형준
    • 한국전기전자재료학회논문지
    • /
    • 제23권10호
    • /
    • pp.793-797
    • /
    • 2010
  • The basic performance of the ground system is evaluated as the ground resistance by applying low frequency current below 1 kHz. However, characteristics of the ground system should be analyzed by high frequency current up to 1 MHz since transient currents having a few hundred kHz component flow during a line-to-ground fault and/or a lightning strike. This paper deals with the design and fabrication of a wideband ground impedance meter (WGIM) which measures the impedance of ground systems in ranges from 65 Hz to 1.28 MHz. Also, a noise elimination algorithm using a digital bandpass filter is proposed. The maximum error of the WGIM is 4.91% in the measurement frequency range.

비접지 DC 급전시스템에서의 Delta-I 지락보호계전 시스템 (Development of Delta-I ground fault Protective Relaying Scheme for DC Traction Power Supply System)

  • 정상기;권삼영;정호성;김주락
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권12호
    • /
    • pp.529-535
    • /
    • 2006
  • In DC tracking power supply system, ground faults are currently detected by the potential relay, 64P. Though 64P relay detects ground fault, it cannot identify the faulted region which causes long traffic delays and safety problem to passengers. A new ground fault protective relay scheme, ${\Delta}I$ ground fault protective relay, that can identify the faulted region is presented in this paper. In ${\Delta}I$ ground fault protective relaying scheme, ground fault is detected by 59, overvoltage relay, which operates ground switch installed between the negative bus and the ground. It preliminarily chooses the faulted feeder after comparing the current increases among feeders and trips the corresponding feeder breaker. After some time delay, it then recloses the breaker if it finds the preselected feeder is not the actual faulted feeder. Whether or not the preselected feeder is the actual faulted feeder is determined by checking the breaker trip status in the neighboring substation in the direction of the tripped breaker. If the corresponding breaker in the neighboring substation is also tripped, it finally judges the preselected feeder is actually a faulted feeder. Otherwise it recloses the tripped breaker. Its algorithms is presented and verified by EMTP simulation.

밀폐형 지중열교환기 설계를 위한 지중 유효열전도도 데이터베이스 구축 (Construction of Ground Effective Thermal Conductivity Database for Design of Closed-Loop Ground Heat Exchangers)

  • 최재호;손병후;임효재
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.776-781
    • /
    • 2008
  • A ground heat exchanger in a GSHP system is an important unit that determines the thermal performance of a system and its initial cost. The Size and performance of this heat exchanger is highly dependent on the thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This paper is part of a research project aiming at constructing a database of these site-specific properties, especially ground effective thermal conductivity. The objective was to develop and evaluation method, and to provide this knowledge to design engineers. To achieve these goals, thermal response tests were conducted using a testing device at nearly 150 locations in Korea. The in-situ thermal response is the temperature development over time when a known heating load imposed, e.g. by circulating a heat carrier fluid through the test exchangers. The line-source model was then applied to the response test data because of its simplicity. From the data analysis, the range of ground effective thermal conductivity at various sites is $1.5{\sim}4.0\;W$/mK. The results also show that the ground effective thermal conductivity varies with grouting materials as well as regional geological conditions and groundwater flow.

  • PDF

Impact of MJS treatment and artificial freezing on ground temperature variation: A case study

  • Jiling, Zhao;Ping, Yang;Lin, Li;Junqing, Feng;Zipeng, Zhou
    • Geomechanics and Engineering
    • /
    • 제32권3호
    • /
    • pp.293-305
    • /
    • 2023
  • To ensure the safety of underground infrastructures, ground can sometimes be first treated by cement slurry and then stabilized using artificial ground freezing (AGF) technique before excavation. The hydration heat produced by cement slurry increases the soil temperature before freezing and results in an extension of the active freezing time (AFT), especially when the Metro Jet System (MJS) treatment is adopted due to a high cement-soil ratio. In this paper, by taking advantage of an on-going project, a case study was performed to evaluate the influence of MJS and AGF on the ground temperature variation through on-site measurement and numerical simulation. Both on-site measurement and simulation results reveal that MJS resulted in a significant increase in the soil temperature after treatment. The ground temperature gradually decreases and then stabilized after completion of MJS. The initiation of AGF resulted in a quick decrease in ground temperature. The ground temperature then slowly decreased and stabilized at later freezing. A slight difference in ground temperature exists between the on-site measurements and simulation results due to limitations of numerical simulation. For the AGF system, numerical simulation is still strongly recommended because it is proven to be cost-effective for predicting the ground temperature variation with reasonable accuracy.

큐브위성 STEP Cube Lab.의 지상국 시스템 개발 (Design of Ground Station System for CubeSat STEP Cube Lab.)

  • 전영현;채봉건;정현모;전성용;오현웅
    • 항공우주시스템공학회지
    • /
    • 제9권4호
    • /
    • pp.37-42
    • /
    • 2015
  • The CubeSats is classified as a pico-class satellite which requires a ground station to track the satellite, transmit commands, and receive an on-orbit data such as SOH (State-of-Health) and mission data according to the operation plan. In order to this, the ground station system has to be properly designed to perform a communication to with the satellite with enough up- and down-link budgets. In this study, a conceptual design of the ground station has been performed for the CubeSat named as STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project). The paper includes a ground station hardware interface design, a link budget analysis and a ground station software realization. In addition, the operation plan of the ground station has been established considering the STEP Cube Lab. mission requirements.