• 제목/요약/키워드: Ground state

검색결과 1,319건 처리시간 0.031초

High Frequency Grounding Impedances of Vertically-Driven Ground Rods

  • Kim, Tae-Ki;Lee, Bok-Hee;Jeon, Duk-Kyu
    • 조명전기설비학회논문지
    • /
    • 제23권7호
    • /
    • pp.41-48
    • /
    • 2009
  • Grounding impedance depends on the frequency of current flowing into a grounding system lightning in particular has a broad frequency spectrum from some tens of Hz to a few MHz. So the grounding impedance related to transient currents such as lightning should be measured. In this paper, the grounding impedances of vertically-driven ground rods of 10, 30 and 48[m] long are measured and analyzed as functions of the frequency of injected current and the feeding point. As a result, the longer the ground rod is, the lower the steady-state ground resistance is. However the grounding impedance of a vertically-driven ground rod at a high frequency is significantly increased. It is not always true that low grounding impedance follows from a low steady-state ground resistance. It is important to evaluate the high frequency performance of grounding systems for protection against lightning.

Palladium의 Embedded Atom Method 개발 (The Embedded Atom Method Analysis of the Palldium)

  • 정영관;김경훈;김세웅;이성희;이근진;박규섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.652-655
    • /
    • 2002
  • The embedded atom method based on the density functional theory is used for calculating ground state properties of realistic metal systems. In this paper, we had corrected constitutive formulae and parameters on the palladium for the purpose of doing Embedded Atom Method analysis. And then we have computed the properties of the palladium on the fundamental scale of the atomic structure. In result, simulated ground state properties, such as the lattice constant, elastics constants and the sublimation energy, show good agreement with Daw's simulation data and with experimental data.

  • PDF

지상 플러터 실험을 위한 시간 영역에서의 비정상 공기력 계산 (Computation of Unsteady Aerodynamic Forces in the Time Domain for GVT-based Ground Flutter Test)

  • 이주연;김종환;배재성
    • 항공우주시스템공학회지
    • /
    • 제10권1호
    • /
    • pp.29-34
    • /
    • 2016
  • Flutter wind-tunnel test is an expensive and complicated process. Also, the test model may has discrepancy in the structural characteristics when compared to those of the real model. "Dry Wind-Tunnel" (DWT) is an innovative testing system which consists of the ground vibration test (GVT) hardware system and software which computationally can be operated and feedback in real-time to yield rapidly the unsteady aerodynamic forces. In this paper, we study on the aerodynamic forces of DWT system to feedback in time domain. The aerodynamic forces in the reduced-frequency domain are approximated by Minimum-state approximation. And we present a state-space equation of the aerodynamic forces. With the two simulation model, we compare the results of the flutter analysis.

Elastic α-12C Scattering with the Ground State of 16O at Low Energies in Effective Field Theory

  • Ando, Shung-Ichi
    • Journal of the Korean Physical Society
    • /
    • 제73권10호
    • /
    • pp.1452-1457
    • /
    • 2018
  • Inclusion of the ground state of $^{16}O$ is investigated for a study of elastic ${\alpha}-^{12}C$ scattering for the l = 0 channel at low energies in effective field theory. We employ a Markov chain Monte Carlo method for the parameter fitting and find that the uncertainties of the fitted parameters are significantly improved compared to those of our previous study. We then calculate the asymptotic normalization constants of the $0^+$ states of $^{16}O$ and compare them with the experimental data and the previous theoretical estimates. We discuss implications of the results of the present work.

GROUND STATE SIGN-CHANGING SOLUTIONS FOR NONLINEAR SCHRÖDINGER-POISSON SYSTEM WITH INDEFINITE POTENTIALS

  • Yu, Shubin;Zhang, Ziheng
    • 대한수학회논문집
    • /
    • 제37권4호
    • /
    • pp.1269-1284
    • /
    • 2022
  • This paper is concerned with the following Schrödinger-Poisson system $$\{\begin{array}{lll}-{\Delta}u+V(x)u+K(x){\phi}u=a(x){\mid}u{\mid}^{p-2}u&&\text{ in }{\mathbb{R}}^3,\\-{\Delta}{\phi}=K(x)u^2&&\text{ in }{\mathbb{R}}^3,\end{array}$$ where 4 < p < 6. For the case that K is nonnegative, V and a are indefinite, we prove the above problem possesses one ground state sign-changing solution with exactly two nodal domains by constraint variational method and quantitative deformation lemma. Moreover, we show that the energy of sign-changing solutions is larger than that of the ground state solutions. The novelty of this paper is that the potential a is indefinite and allowed to vanish at infinity. In this sense, we complement the existing results obtained by Batista and Furtado [5].

Laboratory investigation of the effects of translation on the near-ground tornado flow field

  • Razavi, Alireza;Sarkar, Partha P.
    • Wind and Structures
    • /
    • 제26권3호
    • /
    • pp.179-190
    • /
    • 2018
  • Translation of tornadoes is an important feature in replicating the near-ground tornado flow field which has been simulated in previous studies based on Ward-type tornado simulators using relative motion of the ground plane. In this laboratory investigation, effects of translation on the near-ground tornado flow field were studied using the ISU Tornado Simulator that can physically translate over a ground plane. Two translation speeds, 0.15 m/s and 0.50 m/s, that scale up to those corresponding to slowly-moving tornadoes in the field were selected for this study. Compared with the flow field of a stationary tornado, the simulated tornado with translation had an influence on the spatial distribution and magnitude of the horizontal velocities, early reversal of the radial inflow, and expansion of the core radius. Maximum horizontal velocities were observed to occur behind the center of the translating tornado and on the right side of its mean path. An increase in translation speed, resulted in reduction of maximum horizontal velocities at all heights. Comparison of the results with previous studies that used relative motion of the ground plane for simulating translating tornadoes, showed that translation has similar effects on the flow field at smaller radial distances (~2 core radius), but different effects at larger radial distances (~4 core radius). Further, it showed that the effect of translation on velocity profiles is noticeable at and above an elevation of ~0.6 core radius, unlike those in studies based on the relative motion of the ground plane.

A Theoretical Study of the Formation of Benzene Excimer: Effects of Geometry Relaxation and Spin-state Dependence

  • Kim, Dongwook
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2738-2742
    • /
    • 2014
  • Geometry relaxation effects on the formation of benzene excimer were investigated by means of ab initio calculation at SOS-CIS($D_0$)/aug-cc-pVDZ level. In the case of T-shaped dimer configuration, intermolecular interactions in the excited states are found to be nearly the same as those in the ground state and structural deformations are limited within a single molecule; the geometry relaxation effects are then negligible and singlet-triplet energy gap remains constant. As for face-to-face eclipsed dimer, on the other hand, both molecules undergo structural change. As a result, intermolecular interactions in the excited states are significantly different than those in the ground state. Although the intermolecular distances obtained from potential energy curve calculation with frozen molecular structures are in qualitative agreement, the excited-state binding energies are notably overestimated with respect to those at optimized structures. In particular, the effects are calculated to be larger in $T_1$ state and hence singlet-triplet energy gap, which reduces markedly in this configuration, is underestimated without relaxation.

Dirac Phenomenological Analyses of 1.047-GeV Proton Inelastic Scatterings from 62Ni and 64Ni

  • Shim, Sugie
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1631-1636
    • /
    • 2018
  • Unpolarized 1.047-GeV proton inelastic scatterings from the Ni isotopes $^{62}Ni$ and $^{64}Ni$ are analyzed phenomenologically employing an optical potential model and the first-order collective model in the relativistic Dirac coupled channel formalism. The Dirac equations are reduced to $Schr{\ddot{o}}dinger-like$ second-order differential equations, and the effective central and spin-orbit optical potentials are analyzed by considering the mass-number dependence. The multistep excitation via the $2^+$ state is found to be important for the $4^+$ state excitation in the ground state rotational band for proton inelastic scatterings from the Ni isotopes. The calculated deformation parameters for the $2^+$ and the $4^+$ states of the ground state rotational band and for the first $3^-$ state are found to agree pretty well with those obtained from nonrelativistic calculations.

Fault Detection in Automatic Identification System Data for Vessel Location Tracking

  • Da Bin Jeong;Hyun-Taek Choi;Nak Yong Ko
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권3호
    • /
    • pp.257-269
    • /
    • 2023
  • This paper presents a method for detecting faults in data obtained from the Automatic Identification System (AIS) of surface vessels. The data include latitude, longitude, Speed Over Ground (SOG), and Course Over Ground (COG). We derive two methods that utilize two models: a constant state model and a derivative augmented model. The constant state model incorporates noise variables to account for state changes, while the derivative augmented model employs explicit variables such as first or second derivatives, to model dynamic changes in state. Generally, the derivative augmented model detects faults more promptly than the constant state model, although it is vulnerable to potentially overlooking faults. The effectiveness of this method is validated using AIS data collected at a harbor. The results demonstrate that the proposed approach can automatically detect faults in AIS data, thus offering partial assistance for enhancing navigation safety.