• 제목/요약/키워드: Ground state

검색결과 1,329건 처리시간 0.025초

기저상태계산 문제에 대한 양자컴퓨팅의 성능 분석 (Quantum Computing Performance Analysis of the Ground-State Estimation Problem)

  • 최병수
    • 한국광학회지
    • /
    • 제29권2호
    • /
    • pp.58-63
    • /
    • 2018
  • 최근 양자프로세서와 관련한 연구개발이 본격화되면서 실제 수행가능 한 양자계산량도 계속 증가하고 있다. 이에 양자컴퓨팅은 본격적으로 활용화단계로 진입하고 있다고 볼 수 있다. 다만 아직은 큰 규모의 양자컴퓨팅이 가능하지 않기 때문에 작은 규모의 문제이지만 고전컴퓨팅으로는 해결하기 힘들고, 양자컴퓨팅으로는 효과적으로 계산할 수 있는 문제를 대상으로 하고 있다. 본 연구에서는 이와 관련하여 양자컴퓨터를 이용한 작은 크기의 양자시뮬레이션분야의 실질적인 계산성능에 대한 정량적인 분석 결과를 보고한다. 분석결과 현재까지의 결함허용 기반 양자컴퓨팅은 양자계산성능의 측면에서 다양한 문제점을 갖고 있음을 확인하였다. 본 연구에서는 이와 관련하여 향후 수행해야 할 연구개발 내용을 정리하였다.

McG(맥) 주입공법에 의한 지반보강 및 차수효과에 관한 연구 (A Study on the Ground Reinforcement and Impermeable Effect by McG)

  • 천병식;정종주;정창희;도경량;도종남
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.352-361
    • /
    • 2006
  • The grouting method is widely used in construction to reduce permeability and reinforce the ground. If the cement and grout material are not mixed well in the injection tip equipment, an opposite flow and Interception state of the chemical grouting can occur. McG method installs a special grouting device to allow better mixing of the grouting material and prevent backward flow. The block of nozzle also diversify powder rate of cement. YSS that lowers $Na_2O$ and thereby increases durability is developed by gel-forming reaction material. In this study, the seepage state and unconfined compressive strength of the injection material using the special injection tip equipment is tested. The results of laboratory and field tests clearly demonstrate that the strength increases and permeability decreases using the McG method.

  • PDF

생육환경에 따른 보호수 이미지 평가 - 예산군 느티나무를 중심으로 - (The study on the Image Evaluation of a Preserved Tree as Growth Environment - Focused on the Zelkova serrata in Yesangun -)

  • 손진관;신지훈;안필균;강방훈
    • 농촌계획
    • /
    • 제17권2호
    • /
    • pp.33-41
    • /
    • 2011
  • To evaluate the value of a preserved tree as rural landscape resource, the growth environment and health condition was investigated, and the image evaluation was implemented on land~ape architectural major undergraduate students for zelkova trees in Yesan-gun. The image evaluation results of zelkova trees were as followings; 1) Typical image of preserved tree examined by Semantic Differential Scale were 'Old', 'Big', and 'Good'. 2) The 'big' image of zelkova tree and the height of tree, the width of tree crown, the breast girth of tree, the root girth of tree, the external formation of tree, and the health of tree bark is mutually related. Especially, the correlation between the 'big' and the external formation and the width of tree crown is high. 3) Typical image of preserved tree examined by Likert Scale were 'Natural', 'Green', 'Peaceful', and 'Rural'. 4) The preservation necessity for preserved tree was highly related with the state of ground, and the management necessity for preserved tree was highly related with contamination level and the state of ground. The appropriate management plan for preserved tree are proposed to improve the quality of rural landscape(basis of these results).

소랄렌 유도체의 광화학 반응에 관한 이론적 연구 (Ⅲ) 메칠소랄렌 및 하이드록시소랄렌과 티민의 광생성물의 구조 (Theoretical Studies on the Photochemical Reaction of Psoralen Derivatives (Ⅲ) Photoadducts of Methylpsoralen and Hydroxypsoralen with Thymine)

  • 김자홍;손성호;양기수;박병서
    • 대한화학회지
    • /
    • 제38권6호
    • /
    • pp.405-410
    • /
    • 1994
  • 들뜬상태의 소랄렌 유도체와 바닥상태의 티민 사이에 형성되는 분자착물의 형태를 분자궤도 함수법으로 고찰하였다. PM3-CI-UHF법으로 계산한 결과는 메틸소랄렌 및 하이드록시소랄렌의 C3-C4 이중결합과 C4'-C5' 이중결합과 티민의 C5-C6 이중결합과 광고리화 반응이 일어남을 프론티어궤도의 상호작용으로 설명하고, 이들 화합물의 들뜬상태에서 전자구조를 구조-활성화 관계로 논의하였다.

  • PDF

Ring Flipping of Seven-membered and Eight-membered Dithienodisila-heterocycles

  • Lee, In-Sook;Kwak, Young-Woo;Ghosh, Manikkumer;Ohshita, Joji;Choi, Cheol-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권2호
    • /
    • pp.377-380
    • /
    • 2008
  • Ground state structures and ring flipping transition states of eight- and seven-membered silicon containing heterocyclic compounds such as dithienodisilacyclooctatriene and oxadithienodisilacycloheptadiene derivatives, respectively have theoretically been investigated. Although the bithienylene moiety of the derivatives does not change the ground state structures, they significantly increase the ring flipping barrier by 13-17 kcal/mol in the case of the eight-membered rings (2, 3, and 4) in comparison with that of silicon containing heterocyclic compound 6, chosen as a model. The same moiety increases the flipping barrier of seven-membered ring (5) is only slightly (3.3 kcal/mol) in comparison with that of model compound 7. Hence, it has been concluded that not only the existing ring strain of eight-membered ring but also the bithienylene moiety collectively increases the ring flipping barrier so as to prevent such conformational changes explaining anomalous NMR behaviour of dithienodisilacyclooctatriene derivatives (2-4). In contrast, the effect of substituents R1 and R2 at the olefinic carbons of the eight-membered ring on the flipping barrier turned out to be mild.

지상 전투차량의 명중률 영향요소 분석을 위한 포의 동역학 해석 (Dynamic Analysis of the Turret for Analyzing the Accuracy Impact Factor of the Ground Combat Vehicle)

  • 송재복;박강
    • 한국CDE학회논문집
    • /
    • 제19권4호
    • /
    • pp.340-346
    • /
    • 2014
  • There are many factors that contribute to hit probability of the gun shot of ground combat vehicles. Aiming accuracy is mainly affected by the dynamic state of the vehicle. The stabilization error of the turret under system vibration is one of the major factors that affect the aiming accuracy. The vibration of the vehicle is affected by both the state of the road and the speed of the vehicle. This paper analyzes the aiming accuracy of the gun equipped on the GCV when the vehicle drives on the different roads and at different speed. The vertical displacement and the pitch angle of the gun are calculated and the impact points of the target are calculated. Distribution of the impact points on the target is greatly influenced by the pitch rotation rather than vertical displacement. And this aiming errors result in the errors of point of impacts on the target after the bullet flies through the air under trajectory equations. The GCV is modeled using a half-car model with 6 D.O.F. and the specifications of the M2 machine gun are used in trajectory calculation simulation and the target is located in 1000 m away from the gun.

Photodissocaition Dynamics of Propiolic Acid at 212 nm: The OH Production Channel

  • Shin, Myeong Suk;Lee, Ji Hye;Hwang, Hyonseok;Kwon, Chan Ho;Kim, Hong Lae
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3618-3624
    • /
    • 2012
  • Photodissociation dynamics of propiolic acid ($HC{\equiv}C-COOH$) at 212 nm in the gas phase was investigated by measuring rotationally resolved laser-induced fluorescence spectra of OH ($^2{\Pi}$) radicals exclusively produced in the ground electronic state. From the spectra, internal energies of OH and total translational energy of products were determined. The electronic transition at 212 nm responsible for OH dissociation was assigned as the ${\pi}_{C{\equiv}C}{\rightarrow}{\pi}^*{_{C=O}}$ transition by time-dependent density functional theory calculations. Potential energy surfaces of both the ground and electronically excited states were obtained employing quantum chemical calculations. It was suggested that the dissociation of OH from propiolic acid excited at 212 nm should take place along the $S_1/T_1$ potential energy surfaces after internal conversion and/or intersystem crossing from the initially populated $S_2$ state based upon the potential energy calculations and model calculations for energy partitioning of the available energy among products.

모래지반내의 연직 지반앵커 표면의 마찰각 (Friction Angle on the Surface of Vertical Ground Anchor in Sand)

  • 임종철
    • 한국지반공학회지:지반
    • /
    • 제11권4호
    • /
    • pp.99-110
    • /
    • 1995
  • 본 연구에서는 정규압밀 건조 모래 지반내의 연직 강체 지반앵커에 대한 모형 인발실험을 실시해서 앵커 표면의 마찰각을 실측했다. 마찰각은 앵커 표면의 깊이 방향으로 설치된 다수의 2 방향 로드셀을 사용해서 측정된 수직응력, 전단응력으로 구했다. 실험은 평면변형률 앵커와 축대칭 앵커에 대해서 실시했는데 실험 분석 결과, 앵커표면의 최대마찰각은 평면변형률 압축시험에 의한 무신축방향의 면상의 응력경각의 최대치와 거의 일치한다는 것을 알았다. 이 결론은 모래의 강도 이방성과 구속압 의존성 등을 고려하여 얻은 것으로 앵커 표면 마찰각에 모래의 전단저항각을 적용해서 설계하면 위험측이 된다는 것도 알 수 있다.

  • PDF

A Relativistiv Configuration Interaction Method Using Effective Core Potentials with Spin-Orbit Interactions

  • 김명청;이상연;이윤섭
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권6호
    • /
    • pp.547-552
    • /
    • 1995
  • As an extension to the Kramers' restricted Hartree-Fock (KRHF) method [J. Comp. Chem., 13, 595 (1992)], we have implemented the Kramers' restricted configuration interaction (KRCI) program in order to calculate excited states as well as the ground state of polyatomic molecules containing heavy atoms. This KRCI is based on determinants composed of the two-component molecular spinors which are generated from KRHF calculations. The Hamiltonian employed in the KRHF and KRCI methods contains most of all the important relativistic effects including spin-orbit terms through the use of relativistic effective core potentials (REP). The present program which is limited to a small configuration space has been tested for a few atoms and molecules. Excitation energies of the group 14 and 16 elements calculated using the present KRCI program are in good accordance with the spectroscopic data. Calculated excitation energies for many Rydberg states of K and Cs indicate that spin-orbit terms in the REP, which are derived for the ground state, are also reliable for the description of highly excited states. The electronic states of the polyatomic molecule CH3I are probed from the molecular region to the dissociation limit. Test calculations demonstrate that the present KRCI is a useful method for the description of potential energy surface of polyatomic molecules containing heavy atoms.

Predicting the Young's modulus of frozen sand using machine learning approaches: State-of-the-art review

  • Reza Sarkhani Benemaran;Mahzad Esmaeili-Falak
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.507-527
    • /
    • 2023
  • Accurately estimation of the geo-mechanical parameters in Artificial Ground Freezing (AGF) is a most important scientific topic in soil improvement and geotechnical engineering. In order for this, one way is using classical and conventional constitutive models based on different theories like critical state theory, Hooke's law, and so on, which are time-consuming, costly, and troublous. The others are the application of artificial intelligence (AI) techniques to predict considered parameters and behaviors accurately. This study presents a comprehensive data-mining-based model for predicting the Young's Modulus of frozen sand under the triaxial test. For this aim, several single and hybrid models were considered including additive regression, bagging, M5-Rules, M5P, random forests (RF), support vector regression (SVR), locally weighted linear (LWL), gaussian process regression (GPR), and multi-layered perceptron neural network (MLP). In the present study, cell pressure, strain rate, temperature, time, and strain were considered as the input variables, where the Young's Modulus was recognized as target. The results showed that all selected single and hybrid predicting models have acceptable agreement with measured experimental results. Especially, hybrid Additive Regression-Gaussian Process Regression and Bagging-Gaussian Process Regression have the best accuracy based on Model performance assessment criteria.