• 제목/요약/키워드: Ground state

검색결과 1,321건 처리시간 0.028초

고로슬래그 분말을 혼화재로 사용한 고강도콘크리트의 기초적 성질에 대한 연구 (A Study on the Fundamental Properties of High-Strength Concrete Using Ground Granulated Blast-Furnace Slag as an Admixture)

  • 문한영;최연왕;문대중;송용규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.30-35
    • /
    • 1995
  • This paper presents fundamental experiment for the properties of high performance concrete in its fresh and hardened state made with ground granulated blast-furnace (GGBF) slag. The result is that the effect of decreasing xoncrete temperature is to the mixing ratio of GGBF slag, but it presents disadvantage in the slump loss phase. In addition to, we know that the splitting tensile strength, compressive strength and elastic modulus of concrete mixed with high fineness GGBF slag are increased at age 28days.

  • PDF

Magnetic Properties of Carbon Chains Doped with 4d Transition Metals

  • Jang, Y.R.;Lee, J.I.
    • Journal of Magnetics
    • /
    • 제13권1호
    • /
    • pp.7-10
    • /
    • 2008
  • The structural and magnetic properties of functionalized carbon chains doped with 4d transition metals, such as Ru, Rh, and Pd, were investigated using the full-potential linearized augmented plane wave (FLAPW) method. The carbon nanowire doped with Ru exhibited a ferromagnetic ground state with a sizable magnetic moment, while those doped with Rh and Pd had nonmagnetic ground states. For the Ru-doped chain, the density of states at the Fermi level showed large spin polarization, which suggests that the doped nanowire could be used for spintronic applications.

Nonlinear simulation of tunnel linings with a simplified numerical modelling

  • Zhao, Huiling;Liu, Xian;Bao, Yihai;Yuan, Yong
    • Structural Engineering and Mechanics
    • /
    • 제61권5호
    • /
    • pp.593-603
    • /
    • 2017
  • A high-efficiency simplified modelling approach is proposed for investigating the nonlinear responses of reinforced concrete linings of shield tunnels. Material and geometric nonlinearities are considered in the analysis of the lining structures undergoing large deformation before ultimately losing the load-carrying capacity. A beam-spring element model is developed to capture the force-transfer mechanism between lining segments and radial joints. The developed model is validated by comparing analyzed results to experimental results of a single-ring lining structure under two loading conditions: the ground overloading and the lateral unloading respectively. The results show that the lining structure under the lateral unloading due to excavation on the both sides of the tunnel is more vulnerable compared to the case of ground overloading on the top of the tunnel. A parameter study is conducted and results indicate that the lateral pressure coefficient has the greatest influence on the behaviour of the lining structure.

The α-Effect in SNAr Reaction of 1-Fluoro-2,4-dinitrobenzene with Hydrazine: Ground-State Destabilization versus Transition-State Stabilization

  • Cho, Hyo-Jin;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2371-2374
    • /
    • 2014
  • A kinetic study is reported on SNAr reaction of 1-fluoro-2,4-dinitrobenzene with a series of primary amines including hydrazine in $H_2O$ at $25.0^{\circ}C$. The plots of $k_{obsd}$ vs. [amine] are linear and pass through the origin, indicating that general-base catalysis by a second amine molecule is absent. The Br${\o}$nsted-type plot exhibits an excellent linear correlation with ${\beta}_{nuc}$ = 0.46 when hydrazine is excluded from the correlation. The reaction has been suggested to proceed through a stepwise mechanism, in which expulsion of the leaving group occurs after the rate-determining step (RDS). Hydrazine is ca. 10 times more reactive than similarly basic glycylglycine (i.e., the ${\alpha}$-effect). A five-membered cyclic intermediate has been suggested for the reaction with hydrazine, in which intramolecular H-bonding interactions would facilitate expulsion of the leaving group. However, the enhanced leaving-group ability is not responsible for the ${\alpha}$-effect shown by hydrazine because expulsion of the leaving group occurs after RDS. Destabilization of the ground-state of hydrazine through the electronic repulsion between the nonbonding electron pairs is responsible for the ${\alpha}$-effect found in the current $S_NAr$ reaction.

Predictive models of ultimate and serviceability performances for underground twin caverns

  • Zhang, Wengang;Goh, Anthony T.C.
    • Geomechanics and Engineering
    • /
    • 제10권2호
    • /
    • pp.175-188
    • /
    • 2016
  • The construction of a new cavern modifies the state of stresses and displacements in a zone around the existing cavern. For multiple caverns, the size of this influence zone depends on the ground type, the in situ stress, the cavern span and shape, the width of the pillar separating the caverns, and the excavation sequence. Performances of underground twin caverns can be unsatisfactory as a result of either instability (collapse) or excessive displacements. These two distinct failures should be prevented in design. This study simulated the ultimate and serviceability performances of underground twin rock caverns of various sizes and shapes. The global factor of safety is used as the criterion for determining the ultimate limit state and the calculated maximum displacement around the cavern opening is adopted as the serviceability limit state criterion. Based on the results of a series of numerical simulations, simple regression models were developed for estimating the global factor of safety and the maximum displacement, respectively. It was proposed that a proper pillar width can be determined based on the threshold influence factor value. In addition, design charts with regard to the selection of the pillar width for underground twin rock caverns under similar ground conditions were also developed.

지열히트펌프 시스템의 국내 적용현황 조사 및 분석 (Investigation and Analysis on the present state of Geothermal Source Heat Pump System Applied in Korea)

  • 최미영;고명진;김용식;박진철;이언구
    • 설비공학논문집
    • /
    • 제21권5호
    • /
    • pp.267-272
    • /
    • 2009
  • This study aims to investigate and analyze the present state of ground source heat pump(GSHP) system applied in Korea. It is based on the statistic from the New and Renewable Energy Center in Korea and construction results of the professional companies registered to the center. The research items were installed area, installed year, building use, ground heat exchange type and heat exchanger type of the pump. According to the result of investigation, the using GSHP system have been increasing steadily as the space heating and cooling system in a building. The capacity of this system is also becoming lager based on technical and economical feasibility analysis about the system since GSHP system first introduced in 2000.

Temperature Dependent Photoluminescence from InAs/GaAs Quantum Dots Grown by Molecular Beam Epitaxy

  • Lee, Kyoung Su;Oh, Gyujin;Kim, Eun Kyu;Song, Jin Dong
    • Applied Science and Convergence Technology
    • /
    • 제26권4호
    • /
    • pp.86-90
    • /
    • 2017
  • We have reported structural and optical properties of self-assembled InAs/GaAs quantum dot (QD) grown by molecular beam epitaxy with different arsenic to indium flux ratios (V/III ratios). By increasing the V/III ratio from 9 to 160, average diameter and height of the InAs QDs decreased, but areal density of them increased. The InAs QDs grown under V/III ratio of 30 had a highest-aspect-ratio of 0.134 among them grown with other conditions. Optical property of the InAs QD was investigated by the temperature-dependent photoluminescence (PL) and integrated PL. From the temperature dependence PL measurements of InAs QDs, the activation energies of $E_{a1}$ and $E_{a2}$ for the InAs QDs were obtained $48{\pm}3meV$ and $229{\pm}23meV$, respectively. It was considered that the values of $E_{a1}$ and $E_{a2}$ are corresponded to the energy difference between ground-state and first excited state, and the energy difference between ground-state and wetting layer, respectively.

Nuclear Structure Studies with Low Temperature Technique (I)

  • Young Koh;Park, Won-Seok;Park, Chang-Kyu;Shin, Hee-Sung;Song, Tae-Yung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(2)
    • /
    • pp.669-674
    • /
    • 1996
  • The theory of quantum mechanics states that for any system there are a set of discrete physical states, quantum states, which corresponds a particular energy level of the system. The lowest energy the system can have, corresponding to its ground state, is not necessarily zero, but depends only on the precise microscopic nature of the system under consideration. At the absolute zero of temperature all systems will be in their lowest energy state (zero point energy) and as the system is warmed from OK, the higher energy states become occupied. The probability of occupancy of the excited states relative to that of the ground state is proportional to the absolute temperature. Therefore we can obtain nuclear dipole and quadrupole moment very accurately at ultra low temperature (<15mk) by NMR and from the destruction of anisotropy. The former is called LTNO/NMR and the latter is called LTNO (Low Temperature Nuclear Orientation). In this paper we discuss and introduce only an experimental apparatus with results of cooling power test, a helium dilution refrigerator, which can reache 8mK, and an actual technique for the experiment, a theory and results will be presented in another papers.

  • PDF

Seismic fragility assessment of self-centering RC frame structures considering maximum and residual deformations

  • Li, Lu-Xi;Li, Hong-Nan;Li, Chao
    • Structural Engineering and Mechanics
    • /
    • 제68권6호
    • /
    • pp.677-689
    • /
    • 2018
  • Residual deformation is a crucial index that should be paid special attention in the performance-based seismic analyses of reinforced concrete (RC) structures. Owing to their superior re-centering capacity under earthquake excitations, the post-tensioned self-centering (PTSC) RC frames have been proposed and developed for engineering application during the past few decades. This paper presents a comprehensive assessment on the seismic fragility of a PTSC frame by simultaneously considering maximum and residual deformations. Bivariate limit states are defined according to the pushover analyses for maximum deformations and empirical judgments for residual deformations. Incremental Dynamic Analyses (IDA) are conducted to derive the probability of exceeding predefined limit states at specific ground motion intensities. Seismic performance of the PTSC frame is compared with that of a conventional monolithic RC frame. The results show that, taking a synthetical consideration of maximum and residual deformations, the PTSC frame surpasses the monolithic frame in resisting most damage states, but is more vulnerable to ground motions with large intensities.