• Title/Summary/Keyword: Ground source

Search Result 1,101, Processing Time 0.031 seconds

An Experimental Study of Ground Motion under the Dynamic Load (동하중재하시 지반진동에 관한 실험적 연구)

  • 김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.126-131
    • /
    • 1997
  • Recently, the ground motion occurred by vehicles or trains has been recognized one of the major factors of damage of structures nearly the motion source. To isolate the environments from ground motions, it is necessary to understand the wave propagation in half spaces. Especially, Rayleigh wave is the primary concern because it transmits a major portion of the total source energy and decays the energy more slowly with response to distance than the other waves. In this study, the preliminary data(wave length and damping effect) to design the isolating system are obtained. For this, a field dynamic test is performed, using the exciter which can generate the 100kN vertical cyclic load in the range of 1-60 Hz is used. The fifteen accelerometers to measure the ground response are set up in 3 radial direction at intervals of 10 meters in each row. The wave lengths are calculated using the distance and the phase between the measuring points. The damping effects of the Rayleigh-wave are also observed from the experiments.

  • PDF

The Field of Power/Ground Planes influenced by the HPEM Source, and its Damage Reduction

  • Kahng, Sung-Tek;Kim, Hyeong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.406-410
    • /
    • 2012
  • This paper looks into the field inside the wide rectangular box structure that is excited by the High Power Electromagnetic(HPEM) source as a potential threat to electric grid and communication networks causing malfunction or destruction. The rectangular box is assumed power/ground planes and its internal field is calculated by the cavity model with the lightning strike excitation as an HPEM pulse. The accuracy of the calculation method employed here is validated through a $156mm{\times}106mm{\times}508{\mu}m$ parallel metallic plate case which is manufactured and tested, and is applied to the size of a building. With the help of the cavity model that takes into account loading, the level of the electric field is shown to decrease when a metal pillar is loaded between the power and ground planes.

The Performance Analysis for Low-Depth Unit-type Ground Heat Exchanger According to Grouting Materials (저심도 지중열교환기 개발을 위한 그라우트 재료에 따른 채열성능 검토 연구)

  • Oh, Jin-Hwan;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.2
    • /
    • pp.7-11
    • /
    • 2015
  • Recently, as the demand for sustainable energy sources is increasing, ground-source heat pump (GSHP) systems are receiving growing attention. However, the initial cost of GSHP system is higher than it of the conventional systems, especially, in small-size buildings. Therefore, for the application to the small-size building, it is necessary to develop small-size ground heat exchanger with small-size buildings. In this study, analysis of unit-type heat exchanger due to grouting materials. As a result, 1492.14 W of heat exchange rate was acquired in the condition of cement-silica sand-graphite materials.

The Design of Flash Lantern using LED for aironautical ground lights (LED를 이용한 항공등의 점멸 방법에 대한 연구)

  • Jeong, Hak-Geun;Jung, Bong-Man;Park, Suk-In;Yu, Seung-Won;Shin, Kyu-Yong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.157-159
    • /
    • 2006
  • The advantages of LED(Light Emitting Diode) are low electric power consumption, long life time and excellent visibility. And a LED light source does not include the mercury(Hg) and or a filament, it is expected as an environmentally friendly next generation light source with its good reliability. In order to design and develope the flash lantern using LED for aironautical ground lights, technical trends and new standards about the aironautical ground lights were inspected, and power consumption and flash time for effective luminous intensity of aironautical ground lights were analyzed.

  • PDF

A Study on Development of a Ground-Source Heat Pump System Utilizing Pile Foundation of a Building (건물 기초를 이용한 지중열 공조시스템의 개발에 관한 연구 (1))

  • Ryozo, Ooka;Nam, Yu-Jin;Kentaro, Sekine;Mutsumi, Yokoi;Yoshiro, Shiba;Hwang, Suck-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.148-154
    • /
    • 2005
  • Ground-source (Geothermal) heat pump (GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump (ASHP) systems. However, GSHP systems are not widespread in Japan because of their expensive boring costs. The authors have developed a GSHP system that employs the cast-in-place concrete pile foundations of a building as heat exchangers in order to reduce the initial boring cost. In this system, eight U-tubes are arranged around the surface of a cast-in-place concrete pile foundation. The heat exchange capability of this system, subterranean temperature changes and heat pump performance were investigated in a foil-scale experiment. As a result, the average values for heat rejection were 186${\sim}$201 W/m (for pile, 25 W/m per Pair of tubes) while cooling. The average COP of this system was 4.6 while cooling; rendering this system more effective in energy saving terms than the typical ASHP systems. The initial cost of construction per unit for heat extraction and rejection is ${\yen}$72/W for this system, whereas it is f300/W for existing standard borehole systems.

  • PDF

Heating Performance of Heat Pump System Using Dual Heat Source and Its Operation Characteristics (이중 열원 히트펌프 시스템의 난방 성능과 운전 특성)

  • Lim, Hyojae;Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.2
    • /
    • pp.30-41
    • /
    • 2021
  • This paper presents the heating performance analysis results of a heat pump system using a dual heat source. In this paper, a dual heat source refers to the ground-coupled heat exchanger using both a surface water heat exchanger (SWHE) and a vertical ground heat exchanger (VGHE). In order to evaluate the system performance, we installed a monitoring system to measure the temperature and power consumption of a heat pump and then collected operation data with 4 different load burdened ratios of the dual heat source heat exchanger. During the whole measurement period, the average heating capacity of a water-to-water heat pump unit was 37.3 kW. In addition, the compressor of the heat pump consumed 9.4 kW of power, while the circulating pump of the dual heat source heat exchanger used 6.7 kW of power. Therefore the average heating coefficient of performance (COP) for the heat pump unit was 4.0, while the entire system including the circulating pump was 2.7. Finally, the parallel use of SWHE and VGHE was beneficial to the system performance; however, further researches are needed to optimize the design data for various load ratios of the dual heat source heat exchanger.

Effect of Tillage on Nonpoint Source Pollution of Surface and Ground Water System (I); Effect of Tillage Practices on Density and Saturation of Soil

  • ;shirmohammadi,Adel
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.E
    • /
    • pp.1-11
    • /
    • 1992
  • Increasing national concern on nonpoint source pollution of surface and ground water Systems has led researchers and policy makers to develop certain agricultural Best Management Practices. As an initial step of broad study program above mentioned, this study reflected the effects of different tillage practice on bulk density and degree of saturation on two regional soils, namely Tama silt loam and Catlin silt loam. Results may help to clarify some of the conflicting findings on the impact of tillage systems on these parameters and it may also explain some of the reasons for specific role that different tillage systems play regarding nonpoint source pollution from agricultural fields.

  • PDF

The Study on Interrelationship Analysis of Domestic Road Using PSD (PSD선도를 이용한 국내노면의 상관성 분석에 관한 연구)

  • Kim, Chan-Jung;Kwon, Seong-Jin;Lee, Bong-Hyun;Kim, Hyun-Chul;Bae, Chul-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.806-813
    • /
    • 2006
  • An important factor of vibration test using MAST(multi axial simulation table) system is the reliance of input excitation source. Generally the generation of input excitation source is obtained by the measured data on special road in proving ground. The measured data on special road have more exciting energy than the data of real fields, therefore the time and expense for test can be reduced. But the magnitude of input excitation source must be defined by comparison with the excited energy on real field. The object of this paper makes the data base of domestic roads for the definition of input excitation source which is obtained by the measured data on special road in proving ground. These real field data on domestic roads are analyzed by the power spectral density and interrelationship index.

An Overcurrent Analysis in Neutral Line and Algorithm to Prevent Malfunction of Relay in Distributed Generations (분산전원 연계선로에서 지락고장시 중성선의 과전류 해석 및 보호계전기의 새로운 알고리즘)

  • Shin, Dong-Yeol;Kim, Dong-Myung;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1916-1922
    • /
    • 2009
  • Introducing distributed generators(DGs) to utility distribution system can cause malfunction of relay on the grid when ground faults or severe load unbalances are occurred on the system. Because DGs interconnected to the grid can contribute fault currents and make bidirectional power flows on the system, fault currents from DGs can cause an interference of relay operation. A directional over current relay(DOCR) can determine the direction of power flow whether a fault occurs at the source side or load side through detecting the phases of voltage and current simultaneously. However, it is identified in this paper that the contributed fault current(Ifdg) from the ground source when was occurred to contribute single-line-to-ground(SLG) fault current, has various phases according to the distances from the ground source. It means that the directionality of Ifdg may not be determined by simply detecting the phases of voltage and current in some fault conditions. The magnitude of Ifdg can be estimated approximately as high as 3 times of a phase current and its maximum is up to 2,000 A depending on the capacity of generation facilities. In order to prevent malfunction of relay and damage of DG facilities from the contribution of ground fault currents, Ifdg should be limited within a proper range. Installation of neutral ground reactor (NGR) at a primary neutral of interconnection transformer was suggested in the paper. Capacity of the proposed NGR can be adjusted easily by controlling taps of the NGR. An algorithm for unidirectional relay was also proposed to prevent the malfunction of relay due to the fault current, Ifdg. By the algorithm, it is possible to determine the directionality of fault from measuring only the magnitude of fault current. It also implies that the directionality of fault can be detected by unidirectional relay without replacement of relay with the bidirectional relay.