• Title/Summary/Keyword: Ground reinforcement method

Search Result 336, Processing Time 0.032 seconds

Evaluation of Reinforcement Effects According to Reinforcement Type and Grouting Method (지반보강재의 형상과 그라우팅 방법에 따른 보강효과 평가)

  • Park, Jongseo;Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.8
    • /
    • pp.13-20
    • /
    • 2019
  • In order to ground reinforcement, the chemical grouting, the anchor, the soil nailing system, the micropile, etc. can be mentioned by the methods widely used in domestic. The above ground reinforcement methods are developed by various methods depending on the type of reinforcement, installation method, presence of prestress, grouting method, etc. However, in common, the strength of reinforcement, the friction force of grout and reinforcement and the friction force of grout and ground are the main design variables. Therefore, the optimized ground reinforcement is a material with a high tensile strength of the reinforcement itself, the friction force between the reinforcement and the grout is high, and the application of an optimal grouting method is necessary to improve the friction force between the grout and the ground. In this study, a total of 20 model tests were conducted to analyze the reinforcement effects according to the shape of the reinforcement and the grouting method. As a result of the test, As a result of the experiment, it is judged that the reinforcing effect is superior to the perforated + wing type reinforcement and post grouting method.

A Case Study on Elephant Foot Method for Tunnelling in the Soft Ground (토사터널에서의 각부보강공법 적용성 연구)

  • Park, Chi-Myeon;Lee, Ho;Park, Jae-Hoon;Yoon, Chang-Ki;Hwang, Je-Don
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.863-874
    • /
    • 2009
  • The engineering characteristics and the reinforcement effect of the elephant foot method were discussed with parametric study. The elephant foot method is adopted to support the loads transferred from tunnel crown and improve bearing capacity of elephant foot in poor ground condition. The evaluation of reinforcement effect, which has the mechanical relationship between ground condition, footing size and reinforcement system, was carried out through the previous research and numerical analysis. In addition, the simple design chart was proposed to estimate the applicability of the elephant foot reinforcement method. It will be practical for the engineer to determine the optimum reinforcement method for safe tunnelling in soft ground condition.

  • PDF

An Analytical Study on the Determination of Reinforcement Length of Pile Slab Method (Pile Slab 공법의 보강길이 산정에 관한 해석적 연구)

  • Lee, Young-Keun;Park, Choon-Sik;Lee, Chae-Gun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1232-1238
    • /
    • 2008
  • From the result of analysis using finite element method for the Pile Slab reinforcement length through embankment of height, soft ground and the change of cohesion following results were acquired. 1. The higher embankment of height is, the deeper depth of soft ground is, the smaller cohesion is, Pile Slab reinforcement length increased almost straight. 2. The reinforcement length is controlled by the depth of soft ground, cohesion, embankment of height and the like. Among these, cohesion of soft ground is affected the most. 3. The reinforcement length of Pile Slab is determined using by calculated formula.

  • PDF

Mining Subsidence and Ground Reinforcement (광산 지반침하와 대책)

  • 박남서;이치문;하은룡
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.45-56
    • /
    • 1999
  • There have been many coal mines abandoned since late 1980s in Korea. Due to the abandoned mines, there have been ground subsidences in some area where are under ground reinforcement works now. So, this study shows the general phenomena of mining subsidence and the procedure of ground reinforcement. In general the procedure for ground reinforcement is as below, 1) obtaining information from inquiries and observations, 2) satellite image analysis and surface geological mapping, 3) analysis of maps of coal mines, 4) geophysical survey and boring test and 5) selection of reinforcement method. The case of reinforcement design at Chul-am area, Kangwon Province is introduced in this article.

  • PDF

Analysis of the effect factors on behavior of the surface reinforced very soft ground (표층처리된 초연약지반 거동에 대한 영향인자 분석)

  • You, Seung-Kyong;Lee, Jong-Sun;Yang, Kee-Sok;Cho, Sam-Deok;Ham, Tae-Gew;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.475-483
    • /
    • 2008
  • It is necessary to develop a national design method for surface reinforcement of very soft ground because most current design works rely on crude empirical correlations. In this paper, the mechanical behavior of very soft ground that is surficially reinforced was investigated with the aid of a sents of numerical analysis. Several material properties of each dredged soft ground, reinforcement and backfill sand mat have been exercised the numerical analysis in order to compare the result of numerical analysis with those of the laboratory model test. Through the matching process between the numerical and experimental result, it is possible to find the appropriate material properties of the dredged soft ground, reinforcements and backfill sand mat. These verified material properties permit to show the effect of the stiffness of reinforcement and the thickness of sand mat on the overall deformation.

  • PDF

The effects of the face reinforcement at shallow tunnels in fractured rock masses (파쇄대 암반에서 얕은 심도의 터널 굴착시 막장보강효과에 관한 연구)

  • Nam, Kee-Chun;Heo, Young;You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.323-336
    • /
    • 2003
  • Recently, the development of tunnel reinforcement method has been required relating to the shallow tunnelling in soft ground. In this study, the improvement method on tunnel stability is proposed by evaluating the efficiency of face reinforcement which enables to control extrusion of advance core, however, it is often neglected in urban tunnelling under the poor ground conditions. Systematic pre-confinement ahead of the face improves the tunnel stability, subsequently, displacement of the crown and surface settlement can be restrained by proper method. 3-dimensional numerical analysis including horizontal reinforcement modelling on a face is applied to estimate the behaviour of a tunnel in relation to the ground and reinforcement conditions. Consequently, extrusion at the face decreases significantly after using the horizontal reinforcement and the effect of reinforcement is much increased in case of applying the supplemental reinforcement ahead of the face together. Especially, confinement effect around the tunnel and the core is proved by means of the core reinforcement in poor ground conditions.

  • PDF

A Study on Bearing Capacity Evaluation Method of Surface Reinforcement Method for Soft Ground in Consideration of Stiffness (강성도를 고려한 연약지반 표층처리공법 지지력산정방법에 관한 연구)

  • Ham, Tae-Gew;Seo, Se-Gwan;Cho, Sam-Deok;Yang, Kee-Sok;You, Seung-Kyong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1118-1125
    • /
    • 2009
  • This study, as basic research which was intended to develope the surface reinforcement method using reinforcement material which is applicable to very soft ground in Korea, was aimed at proposing Bearing Capacity Evaluation method for the surface ground improvement method. To that end, a wide width tensile test using geotextile, geogrid and steel bar (substitute for bamboo) and 21 kinds of the laboratory model tests with the end restraint conditions of the reinforcement that comprises the constrained and partially constrained (3 types) conditions were conducted. According to result of tests, Terzaghi's bearing capacity method is adequate to calculate bearing capacity in non-stiff material(geotextile, geogrid). But, It can't adequate to stiff material(bamboo net). So, New bearing capacity method suggest surface reinforcement method of very soft ground which Terzaghi's bearing capacity method modify for effect of stiffness.

  • PDF

A Case Study on the Reinforcement Method of Subway Tunnel (도심지 지하철 터널의 지반보강공법 시공사례 연구)

  • 천병식;여유현;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.201-208
    • /
    • 1999
  • The NATM(New Austrian Tunnelling Method) has been used for tunnelling since 1980's. But Collapses of tunnel under construction take place frequently, especially at urban areas because of adjacent buildings, underground conduits and traffic loads. This paper is a case study on the reinforcement method of subway tunnel at urban areas. In this study, ground inspection, geological investigation, laboratory test and numerical analysis by means of FDM program were carried out. The tunnel excavation was stopped because of over excessive brake of tunnel crown and shotcrete was installed to prevent deformation of adjacent ground as the temporary method. From the result of field survey and geological investigation, it is found that the soft weathered soil was distributed to the ground of tunnel invert unlike original investigation. The results of the analysis and the study show that the SGR(Space Grouting Rocket) method and Umbrella method can be applied for the stability of tunnel excavation and in addition the reinforcement of concrete lining is required for long-term stability of tunnel.

  • PDF

A Study on Reinforcement for Slope Stability of Gentle Inclination Slope Collapse Occurrence Area (완경사 사면붕괴 지역의 안전성 보강대책 연구)

  • 이승호;황영철;조성민;노흥제;이은동
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.83-91
    • /
    • 2003
  • Always slope according to construct road exist danger because of environment unstability factor in slope, Since this research an inclination of slope is gentle slope (1:1.5∼1:9.0) but falling happened by conduct of continuous ground movement. And this study considered more economical and efficient reinforcement method for slope stability. The various reinforcement methods are applied to execute examination of slope stability. Applied reinforcement methods satisfied safety factor And this research region is performing continuous measurement about ground movements and displacements.

  • PDF

A Study for Bearing Capacity Calculation Method of Very Soft Ground with Reinforced Surface (표층처리공법으로 개량된 초연약지반의 지지력산정방법에 관한 연구)

  • Ham, Tae-Gew;Cho, Sam-Deok;Yang, Kee-Sok;You, Seung-Kyong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.303-314
    • /
    • 2010
  • This study, as basic research which was intended to develope the surface reinforcement method using reinforcement material which is applicable to very soft ground in Korea, was aimed at proposing the design parameter for the surface ground improvement method. To that end, a wide width tensile test using geotextile, geogrid and steel bar (substitute for bamboo) and 49 kinds of the laboratory model tests were conducted. And the result the study suggested $\beta_s$, the stiffness coefficient to evaluate the stiffness effect of reinforcement materials. Then, it was also found that the stiffness coefficient, $\beta_s$ as the testing constant would be appropriate as high as 1.0, 1.1 and 1.5 for geotextile, geogrid and steel bar, respectively. And It was evaluated that the stiffness effect affecting reinforcement improvement effect would be reduced as the thickness of embeded depth increases and that RFe, the stiffness effect reduction coefficient would have positive correlation with H/B. Finally, it was confirmed that the bearing capacity gained from the method to calculate bearing capacity, which was suggested in the study, would almost correctly estimate the capacity, demonstrating the appropriateness of the proposed bearing capacity calculation method.

  • PDF