• Title/Summary/Keyword: Ground penetrating radar (GPR)

Search Result 179, Processing Time 0.021 seconds

A new approach to enhancement of ground penetrating radar target signals by pulse compression (파형압축 기법에 의한 GPR탐사 반사신호 분해능 향상을 위한 새로운 접근)

  • Gaballah, Mahmoud;Sato, Motoyuki
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.77-84
    • /
    • 2009
  • Ground penetrating radar (GPR) is an effective tool for detecting shallow subsurface targets. In many GPR applications, these targets are veiled by the strong waves reflected from the ground surface, so that we need to apply a signal processing technique to separate the target signal from such strong signals. A pulse-compression technique is used in this research to compress the signal width so that it can be separated out from the strong contaminated clutter signals. This work introduces a filter algorithm to carry out pulse compression for GPR data, using a Wiener filtering technique. The filter is applied to synthetic and field GPR data acquired over a buried pipe. The discrimination method uses both the reflected signal from the target and the strong ground surface reflection as a reference signal for pulse compression. For a pulse-compression filter, reference signal selection is an important issue, because as the signal width is compressed the noise level will blow up, especially if the signal-to-noise ratio of the reference signal is low. Analysis of the results obtained from simulated and field GPR data indicates a significant improvement in the GPR image, good discrimination between the target reflection and the ground surface reflection, and better performance with reliable separation between them. However, at the same time the noise level slightly increases in field data, due to the wide bandwidth of the reference signal, which includes the higher-frequency components of noise. Using the ground-surface reflection as a reference signal we found that the pulse width could be compressed and the subsurface target reflection could be enhanced.

Archaeological geophysics: 3D imaging of the Muweilah archaeological site, United Arab Emirates

  • Evangelista Ryz;Wedepohl Eric
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.93-98
    • /
    • 2004
  • The sand-covered Muweilah archaeological site in the United Arab Emirates (UAE) is a unique Iron Age site, and has been subject to intensive investigations. However, excavations are time consuming and may require twenty years to complete. Thus geophysical surveys were undertaken with the objective of characterising the site more expeditiously. This paper presents preliminary results of these surveys. Ground penetrating radar (GPR) was tested as a primary imaging tool, with an ancillary shallow time domain EM (MetalMapper) system. Dense 3D GPR datasets were migrated to produce horizontal (plan view) depth slices at 10 cm intervals, which is conceptually similar to the archaeologists' excavation methodology. The objective was to map all features associated with anthropogenic activity. This required delineating extensive linear and planar features, which could represent infrastructure. The correlation between these and isolated point reflectors, which could indicate anthropogenic activity, was then assessed. Finally, MetalMapper images were used to discriminate between metallic and non-metallic scatterers. The moderately resistive sand cover allowed GPR depth penetration of up to 5 m with a 500 MHz system. GPR successfully mapped floor levels, walls, and isolated anthropogenic activity, but crumbling walls were difficult to track in some cases. From this study, two possible courtyard areas were recognised. The MetalMapper was less successful because of its limited depth penetration of 50 cm. Despite this, the system was still useful in detecting modem-day ferruginous waste and bronze artefacts. The results (subject to ongoing ground-truthing) indicated that GPR was optimal for sites like Muweilah, which are buried under a few metres of sand. The 3D survey methodology proved essential to achieve line-to-line correlation for tracking walls. In performing the surveys, a significant improvement in data quality ensued when survey areas were flattened and de-vegetated. Although MetalMapper surveys were not as useful, they certainly indicated the value of including other geophysical data to constrain interpretation of complex GPR features.

Precise Detection of Buried Underground Utilities by Non-destructive Electromagnetic Survey (비파괴 전자탐사에 의한 지하 매설물의 정밀탐지)

  • Shon, Ho-Woong;Lee, Seung-Hee;Lee, Kang-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.275-283
    • /
    • 2002
  • To detect the position and depth of buried underground utilities, method of Ground Penetrating Radar(GPR) survey is the most commonly used. However, the skin-depth of GPR is very shallow, and in the places where subsurface materials are not homogeneous and are compose of clays and/or salts and gravels, GPR method has limitations in application and interpretation. The aim of this study is to overcome these limitations of GPR survey. For this purpose the site where the GPR survey is unsuccessful to detect the underground big pipes is selected, and soil tests were conducted to confirm the reason why GPR method was not applicable. Non-destructive high-frequency electromagnetic (HFEM) survey was newly developed and was applied in the study area to prove the effectiveness of this new technique. The frequency ranges $2kHz{\sim}4MHz$ and the skin depth is about 30m. The HFEM measures the electric field and magnetic field perpendicular to each other to get the impedance from which vertical electric resistivity distribution at the measured point can be deduced. By adopting the capacitive coupled electrodes, it can make the measuring time shorter, and can be applied to the places covered by asphalt an and/or concrete. In addition to the above mentioned advantages, noise due to high-voltage power line is much reduced by stacking the signals. As a result, the HFEM was successful in detecting the buried underground objects. Therefore this method is a promising new technique that can be applied in the lots of fields, such as geotechnical and archaeological surveys.

Comparison of FDTD Simulation Results with Measurement Data of a Ground-Penetrating Radar (지하침투 레이더의 FDTD 모의계산 결과와 측정자료의 비교)

  • Hyun, Seung-Yeup;Kim, Se-Yun;Kim, Young-Sik
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.1-8
    • /
    • 1999
  • A complete electromagnetic simulation for a ground-penetrating radar(GPR) is implemented by employing 3-dimensional dispersive finite-difference time-domain(FDTD) method. The presented simulation model includes the cavity-backed bow-tie antennas, which are terminated by resistors. And an equivalent cirvuit consisting of the input impedance of the antenna and the characteristic impedance of the feed line is used to calculate the response in the receiving antenna. Actual emasurements of a GPR system including our manufactured bow-tie antenna pair are performed just above dry sand contained in a PVC tank. It is confirmed that the FDTD simulation results agree well with the actual measurement data.

  • PDF

Numerical Modeling of Antenna Transmission for Borehole Ground-Penetrating Radar -Code Development- (시추공 레이다를 위한 안테나 전파의 수치 모델링 -프로그램 개발-)

  • Chang, Han-Nu-Ree;Kim, Hee-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.265-270
    • /
    • 2006
  • High-frequency electromagnetic (EM) wave propagation phenomena associated with borehole ground-penetrating radar (GPR) surveys are complex. To improve the understanding of governing physical processes, we present a finite-difference time-domain solution of Maxwell's equations in cylindrical coordinates. This approach allows us to model the full EM wavefield associated with borehole GPR surveys. The algorithm can be easily implemented perfectly matched layers for absorbing boundaries, frequency-dependent media, and finite-length transmitter antenna.

  • PDF

Detection of Abnormal Area of Ground in Urban Area by Rectification of Ground Penetrating Radar Signal (지하투과레이더 신호의 보정을 통한 도심지 내 지반 이상구간의 검측)

  • Kang, Seonghun;Lee, Jong-Sub;Lee, Sung Jin;Lee, Jin Wook;Hong, Won-Taek
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.217-231
    • /
    • 2017
  • The subsidence of ground in urban area can be caused by the occurrence of the cavity and the change in ground volumetric water content. The objective of this study is the detection of abnormal area of ground in urban area where the cavity or the change in ground volumetric water content is occurred by the ground penetrating radar signal. GPR survey is carried out on the test bed with a circular buried object. From the GPR survey, the signals filtered by the bandpass filtering are measured, and the methods consisting of gain function, time zero, background removal, deconvolution and display gain are applied to the filtered signals. As a result of application of the signal processing methods, the polarity of signal corresponds with the relation of electrical impedance of the cavity and the ground in test bed. In addition, the relative permittivity calculated by GPR signal is compared with that of predicted by volumetric water content of the test bed. The relative permittivities obtained from two different methods show similar values. Therefore, the abnormal area where the change in ground volumetric water content is occurred can be detected from the results of the GPR survey in case the depth of underground utilities is known. Signal processing methods and estimation of relative permittivity performed in this study may be effectively used to detect the abnormal area of ground in urban area.

Development of ballast/subgrade investigation technique using GPR/PBS/FWD (GPR/PBS/FWD를 이용한 도상/노반 상태평가 기술 개발)

  • Kim Dae-Sang;Park Tae-Soon;Kang Seung-Goo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1113-1118
    • /
    • 2004
  • Ballasted track is constructed in consideration of the maintenance. The application time and frequency of MTT(Multiple Tie Tamper) and BS(Ballast Cleaner) depend on track geometry measurements. This paper presents the application of Ground Penetrating Radar(GPR), Falling Weight Deflectometer(FWD), and Portable Ballast Sampler (PBS) to evaluate the effects of track geometry due to substructure deterioration and to build a reliable substructure evaluation system.

  • PDF

Evaluation of Van Khan Tooril's castle, an archaeological site in Mongolia, by Ground Penetrating Radar (GPR을 이용한 몽고 유적지 반 칸 투리일의 성 (Van Khan Tooril's castle)의 평가)

  • Khuut, Tseedulam;Sato, Motoyuki
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.69-76
    • /
    • 2009
  • We report an implementation of the Ground Penetrating Radar (GPR) survey at a site that corresponds to a ruined castle. The objective of the survey was to characterise buried archaeological structures such as walls and tiles in Van Khan Tooril's Ruin, Mongolia, by 2D and 3D GPR techniques. GPR datasets were acquired in an area 10mby 9 m, with 10 cm line spacing. Two datasets were collected, using GPR with 500MHz and 800MHz frequency antennas. In this paper, we report the use of instantaneous parameters to detect archaeological targets such as tile, brick, and masonry by polarimetric GPR. Radar polarimetry is an advanced technology for extraction of target scattering characteristics. It gives us much more information about the size, shape, orientation, and surface condition of radar targets. We focused our interpretation on the strongest reflections. The image is enhanced by the use of instantaneous parameters. Judging by the shape and the width of the reflections, it is clear that moderate to high intensity response in instantaneous amplitude corresponds to brick and tiles. The instantaneous phase map gave information about the location of the targets, which appeared as discontinuities in the signal. In order to increase our ability to interpret these archaeological targets, we compared the GPR datasets acquired in two orthogonal survey directions. A good correlation is observed for the alignments of reflections when we compare the two datasets. However, more reflections appear in the north-south survey direction than in the west-east direction. This is due to the electric field orientation, which is in the horizontal plane for north-south survey directions and the horizontally polarised component of the backscattered high energy is recorded.

Survey of underwater deposits using ground penetrating radar (지표레이다 (GPR) 탐사에 의한 하상퇴적물 조사)

  • Chang, Hyun-Sam;Jeong, Seong-Tae
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.163-178
    • /
    • 2002
  • Investigation of underwater sedimentary layers has been carried out with GPR (Ground Penetration Radar) survey. GPR survey has been proved to be very satisfactory since the target area has shallow water depth of about 2.5 m, is lake with no water flow, and the thickness of mud layer, which is a main survey target, is relatively thin. The results clearly showed the underwater sedimentary layers, which includes mud, sand, gravel and basement layer. Specially, the distribution and total amount of mud layers from the survey, which is main target of removal, can be used as a basic data for the dredging of mud layer in the area.

  • PDF

Georeferencing of GPR image data using HD map construction method (정밀 도로 지도 구축 방법을 이용한 GPR 영상 데이터 지오레퍼런싱)

  • Shin, Jinsoo;Won, Jonghyun;Lee, Seeyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.507-513
    • /
    • 2021
  • GPR (Ground Penetrating RADAR) is a sensor that inspects the pavement state of roads, sinkholes, and underground pipes. It is widely used in road management. MMS (Mobile Mapping System) creates a detailed and accurate road map of the road surface and its surroundings. If both types of data are built in the same area, it is efficient to construct both ground and underground spatial information at the same time. In addition, since it is possible to grasp the road and important facilities around the road, the location of underground pipelines, etc. without special technology, an intuitive understanding of the site is also possible, which is a useful tool in managing the road or facilities. However, overseas equipment to which this latest technology is applied is expensive and does not fit the domestic situation. LiDAR (Light Detection And Raging) and GNSS/INS (Global Navigation Satellite System / Inertial Navigation System) were synchronized in order to replace overseas developed equipment and to secure original technology to develop domestic equipment in the future, and GPR data was also synchronized to the same GNSS/INS. We developed software that performs georeferencing using the location and attitude information from GNSS/INS at the time of acquiring synchronized GPR data. The experiments were conducted on the road site by dividing the open sky and the non-open sky. The road and surrounding facilities on the ground could be easily checked through the 3D point cloud data acquired through LiDAR. Georeferenced GPR data could also be viewed with a 3D viewer along with point cloud data, and the location of underground facilities could be easily and quickly confirmed through GPR data.