• Title/Summary/Keyword: Ground mode

Search Result 645, Processing Time 0.023 seconds

Study on Forced Vibration Behavior of WIG Vehicle Main Wing Structure Excited by Propulsion System (프로펠러 엔진에 의해 가진되는 소형 위그선 주날개의 진동 거동 해석에 관한 연구)

  • Kong, Chang-Duk;Yoon, Jae-Huy;Park, Hyun-Bum
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.7-12
    • /
    • 2007
  • Previously study on structural design of the main wing of the twenty-seat class WIG (Wing in Ground Effect) craft. In the final design, three spars construction was selected for safety in the critical flight load, and the Carbon-Epoxy material was selected for lightness and structural stability. In this study, the forced vibration analysis was performed on the composite main wing structure of the twenty-seat class WIG craft with two-stroke pusher type reciprocating engine. The vibration analysis based on the finite element method was performed using a commercial FEM code, MSC/NASTRAN. Excitations for the frequency response analysis were assumed as the Y-mode (lateral mode), the Z-mode (vertical mode) and the $M_{xyz}$-mode (twisted mode) which are typical main vibration modes of engine. And excitations for the transient response analysis were assumed as the X-mode (longitudinal mode) with the oscillating propeller thrust which occurs in operation.

  • PDF

The Study on the Parameters to Represent the Characteristics of the Observed Ground motions (국내 관측 지진파형을 이용한 지진파형 영향인자에 관한 연구)

  • 김준경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.44-48
    • /
    • 2000
  • Several parameters to represent the characteristics of the observed at the domestic networks from several earthquakes occurred in the Korean Peninsula. Parameters to fit most the multiple Fourier amplitude spectra of the observed accelerations are estimated. This study adopts the stochastic ground motion model referred to the BLWN mode in which the energy is distributed randomly over the duration of the source and which has proven to be very effective in modeling a wide range of ground motion observations. The stochastic ground motion model employed here uses an omega-squared ({{{{ omega ^2 }}) Brune source model with a single corner frequency and a constant stress drop,. The {{{{ omega ^2 }} source model has become a seismological standard because of its simplicity an ability to predict spectral amplitudes and shapes over an extremely broad ranges of magnitudes distances and from the inversion show very unstable based on the fact of high values of mean/median. These results may imply that more observed data and more precise site classification including accurate preparation analysis of data such as more accurate scaling from counts to kine are needed for more stable are effective inversion of Fourier amplitude spectrum of the observed ground motions.

  • PDF

Ground Software Validation Test for Wheel Off-loading of COMS (통신해양기상위성의 휠오프로딩 지상국 소프트웨어 검증시험)

  • Park, Young-Woong;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.51-56
    • /
    • 2010
  • There are two main software in COMS ground station at the normal mode operation - stationkeeping and wheel off-loading. In this paper, ground software validation test for wheel off-loading is summarized and described. The wheel off-loading was performed the design change from E3000 heritage and analyzed. The wheel off-loading of ground software has two part; one is wheel off-loading management for parameters change at the thruster set switching time and the other is wheel off-loading set-point being sent to satellite for the reference momentum.

Occurrence mechanism of recent large earthquake ground motions at nuclear power plant sites in Japan under soil-structure interaction

  • Kamagata, Shuichi;Takeqaki, Izuru
    • Earthquakes and Structures
    • /
    • v.4 no.5
    • /
    • pp.557-585
    • /
    • 2013
  • The recent huge earthquake ground motion records in Japan result in the reconsideration of seismic design forces for nuclear power stations from the view point of seismological research. In addition, the seismic design force should be defined also from the view point of structural engineering. In this paper it is shown that one of the occurrence mechanisms of such large acceleration in recent seismic records (recorded in or near massive structures and not free-field ground motions) is due to the interaction between a massive building and its surrounding soil which induces amplification of local mode in the surface soil. Furthermore on-site investigation after earthquakes in the nuclear power stations reveals some damages of soil around the building (cracks, settlement and sand boiling). The influence of plastic behavior of soil is investigated in the context of interaction between the structure and the surrounding soil. Moreover the amplification property of the surface soil is investigated from the seismic records of the Suruga-gulf earthquake in 2009 and the 2011 off the Pacific coast of Tohoku earthquake in 2011. Two methods are introduced for the analysis of the non-stationary process of ground motions. It is shown that the non-stationary Fourier spectra can detect the temporal change of frequency contents of ground motions and the displacement profile integrated from its acceleration profile is useful to evaluate the seismic behavior of the building and the surrounding soil.

Prediction of hysteretic energy demands in steel frames using vector-valued IMs

  • Bojorquez, Eden;Astorga, Laura;Reyes-Salazar, Alfredo;Teran-Gilmore, Amador;Velazquez, Juan;Bojorquez, Juan;Rivera, Luz
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.697-711
    • /
    • 2015
  • It is well known the importance of considering hysteretic energy demands for the seismic assessment and design of structures. In such a way that it is necessary to establish new parameters of the earthquake ground motion potential able to predict energy demands in structures. In this paper, several alternative vector-valued ground motion intensity measures (IMs) are used to estimate hysteretic energy demands in steel framed buildings under long duration narrow-band ground motions. The vectors are based on the spectral acceleration at first mode of the structure Sa($T_1$) as first component. As the second component, IMs related to peak, integral and spectral shape parameters are selected. The aim of the study is to provide new parameters or vector-valued ground motion intensities with the capacity of predicting energy demands in structures. It is concluded that spectral-shape-based vector-valued IMs have the best relation with hysteretic energy demands in steel frames subjected to narrow-band earthquake ground motions.

Seismic and collapse analysis of a UHV transmission tower-line system under cross-fault ground motions

  • Tian, Li;Bi, Wenzhe;Liu, Juncai;Dong, Xu;Xin, Aiqiang
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.445-457
    • /
    • 2020
  • An ultra-high voltage (UHV) transmission system has the advantages of low circuitry loss, high bulk capacity and long-distance transmission capabilities over conventional transmission systems, but it is easier for this system to cross fault rupture zones and become damaged during earthquakes. This paper experimentally and numerically investigates the seismic responses and collapse failure of a UHV transmission tower-line system crossing a fault. A 1:25 reduced-scale model is constructed and tested by using shaking tables to evaluate the influence of the forward-directivity and fling-step effects on the responses of suspension-type towers. Furthermore, the collapse failure tests of the system under specific cross-fault scenarios are carried out. The corresponding finite element (FE) model is established in ABAQUS software and verified based on the Tian-Ma-Qu material model. The results reveal that the seismic responses of the transmission system under the cross-fault scenario are larger than those under the near-fault scenario, and the permanent ground displacements in the fling-step ground motions tend to magnify the seismic responses of the fault-crossing transmission system. The critical collapse peak ground acceleration (PGA), failure mode and weak position determined by the model experiment and numerical simulation are in relatively good agreement. The sequential failure of the members in Segments 4 and 5 leads to the collapse of the entire model, whereas other segments basically remain in the intact state.

Evaluation of Ku-band Ground-based Interferometric Radar Using Gamma Portable Radar Interferometer

  • Hee-Jeong, Jeong;Sang-Hoon, Hong;Je-Yun, Lee;Se-Hoon, Song;Seong-Woo, Jung;Jeong-Heon, Ju
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.65-76
    • /
    • 2023
  • The Gamma Portable Radar Interferometer (GPRI) is a ground-based real aperture radar (RAR) that can acquire images with high spatial and temporal resolution. The GPRI ground-based radar used in this study composes three antennas with a Ku-band frequency of 17.1-17.3 GHz (1.73-1.75 cm of wavelength). It can measure displacement over time with millimeter-scale precision. It is also possible to adjust the observation mode by arranging the transmitting and receiving antennas for various applications: i) obtaining differential interferograms through the application of interferometric techniques, ii) generation of digital elevation models and iii) acquisition of full polarimetric data. We introduced the hardware configuration of the GPRI ground-based radar, image acquisition, and characteristics of the collected radar images. The interferometric phase difference has been evaluated to apply the multi-temporal interferometric SAR application (MT-InSAR) using the first observation campaigns at Pusan National University in Geumjeong-gu, Busan.

Shaking Table Test of a 1/5 Scale 3-Story Nonductile infilled Reinforced Concrete Frame (조적채움벽이 있는 1/5 축소 3층 비연성 철근콘크리트 골조의 진동대 실험)

  • 이한선;우성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.541-546
    • /
    • 1998
  • The objective of this research is to observe the actual response of low-rise nonseismic moment-resisting infilled reinforced concrete frame subjected to varied levels of earthquake ground motions. First of all, the reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used. This model was, then, subjected to the shaking table motions simulating Taft N21E component earthquake ground motions, whose peak ground accelerations(PGA`s) were modified to 0.12g, 0.2g, 0.3g, and 0.4g. The global behavior and failure mode were observed. The lateral accelerations and displacements at each story and local deformations at the critical portions of structure were measured. Before and after each earthquake simulation test, free vibration tests were performed to find the changes in the natural period of the model.

  • PDF

Inelatic Behaviors of A 3-Story Reinforced Concrete Frame with Nonseismic Details (비내진 상세를 가진 3층 철근콘크리트 골조의 비탄성 거동)

  • 이한선;우성우;허윤섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.427-432
    • /
    • 1998
  • The objective of this research is to observe the actual response of low-rise nonseismic moment-resisting reinforced frame subjected to varied levels of earthquake ground motions. First of all, the reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used. This model was, then, subjected to the shaking table motions simulating Taft N21E component earthquake ground motions, whose peak ground accelerations(PGA's) were modified to 0.12g, 0.2g, 0.3g, and 0.4g. The global behavior and failure mode were observed. The lateral accelerations and displacements at each story and local deformations at the critical portions of structure were measured. The base shear was measured by using specially made load cells. Before and after each earthquake simulation test, free vibration tests were performed to find the changes in the natural period and damping ratio of the model.

  • PDF

Low power-high performance embedded SRAM circuit techniques with enhanced array ground potential (어레이 접지전압 조정에 의한 저전력, 고성능 내장형 SRAM 회로 기술)

  • 정경아;손일헌
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.2
    • /
    • pp.36-47
    • /
    • 1998
  • Low power circuit techniques have been developed to realize the highest possible performance of embedded SRAM at 1V power supply with$0.5\mu\textrm{m}$ single threshold CMOS technology in which the unbalance between NMOS and PMOS threshold voltages is utilized to optimize the low power CMOS IC design. To achieve the best trade-off between the transistor drivability and the subthreshold current increase, the ground potential of memory array is raised to suppressthe subthreshold current. The problems of lower cellstability and bit-line dealy increase due to the enhanced array ground potential are evaluated to be controlled within the allowable range by careful circuit design. 160MHz, 128kb embedded SRAM with 3.4ns access time is demonstrated with the power consumption of 14.8mW in active $21.4{mu}W$ in standby mode at 1V power supply.

  • PDF