• Title/Summary/Keyword: Ground freezing system

Search Result 27, Processing Time 0.024 seconds

Impact of MJS treatment and artificial freezing on ground temperature variation: A case study

  • Jiling, Zhao;Ping, Yang;Lin, Li;Junqing, Feng;Zipeng, Zhou
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.293-305
    • /
    • 2023
  • To ensure the safety of underground infrastructures, ground can sometimes be first treated by cement slurry and then stabilized using artificial ground freezing (AGF) technique before excavation. The hydration heat produced by cement slurry increases the soil temperature before freezing and results in an extension of the active freezing time (AFT), especially when the Metro Jet System (MJS) treatment is adopted due to a high cement-soil ratio. In this paper, by taking advantage of an on-going project, a case study was performed to evaluate the influence of MJS and AGF on the ground temperature variation through on-site measurement and numerical simulation. Both on-site measurement and simulation results reveal that MJS resulted in a significant increase in the soil temperature after treatment. The ground temperature gradually decreases and then stabilized after completion of MJS. The initiation of AGF resulted in a quick decrease in ground temperature. The ground temperature then slowly decreased and stabilized at later freezing. A slight difference in ground temperature exists between the on-site measurements and simulation results due to limitations of numerical simulation. For the AGF system, numerical simulation is still strongly recommended because it is proven to be cost-effective for predicting the ground temperature variation with reasonable accuracy.

Numerical Study on Freezing and Thawing Process in Modular Road System (모듈러 도로시스템의 동결-융해에 대한 수치해석적 연구)

  • Shin, Hosung;Kim, Jinwook;Lee, Jangguen;Kim, Dong-Gyou
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.49-62
    • /
    • 2017
  • In order to understand response of geo-structures to the freezing-thawing process in the ground, it is necessary to consider phase change of the pore water of the ground and also to understand soil interaction with structures. In this study, numerical analysis was carried out for freezing and thawing effect on the modular road system. Neumann's theoretical equation for freezing-thawing processes in porous media can be used to estimate frozen depth and heaving from basic soil properties and ground and surface temperature, but its application is limited to the case for the sediment with fully saturated condition and zero unfrozen water content. Numerical analysis of the modular road system was performed on various soil types and different ground water table as the varying freezing index. The amount of heaving in the silty soil was much larger than those in granite weathered soil or sandy soil, and lowering groundwater level reduced ground heaving induced by freezing. Numerical analysis for temperature history of the ground surface predicted residual heaving near the surface by the freeze-thaw process in silty soil. It ought to reduce stiffness and bearing capacity of the ground so that it will impair stability and serviceability of new road system. However, the amount of residual heaving was insignificant for the road system installed in weathered soil granite and sandy soil. Since modular road system is a pavement structure mounted on the supporting substructure unlike the prevalent road pavement system, strict criteria should be applied for uniform and differential settlement of the pavement system.

Experimental Study on Freezing Soil Barrier Wall for Contaminant Transfer Interception (오염물질 이동 차단을 위한 동결차수벽 형성에 관한 실험적 연구)

  • Shin, Eun-Chul;Kim, Jin-Soo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.29-34
    • /
    • 2011
  • The purpose of this study was to prevent spreading of contaminants from movement of underground water by creating a barrier using artificial freezing method on a soil contaminated by oils and various DNAPLs. Specimens with 80% and 90% degrees of saturation were prepared to form freezing barrier using artificial freezing method. As the results of freezing specimen within soil bin with artificial ground freezing system, artificial contaminated soil cut off wall formed the thinnest wall after 12 hours. It is judged that this cut off wall will control the second soil pollution by intercepting expansion and movement of pollutants and DNAPLs within artificial contaminated soil cut off wall by underground water, intercepting inflow or outflow of underground water. Cut off walls formed by artificial ground freezing system had each other freezing speed according to degree of saturation.

Evaluation of Ground Water Level Effect on Frost Heaving in Road Pavements (도로 포장체에서 동상에 대한 지하수위 영향 평가)

  • Kweon, Gichul;Lee, Jaehoan
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.47-56
    • /
    • 2013
  • PURPOSES: This study is to evaluate a ground water level effect on frost heaving in road pavements. METHODS: The effects of water table on frost heaving in pavement systems were evaluated from the mechanical analysis using FROST program. The input parameters and boundary conditions were determined by considering climates, pavement sections, and material properties specially subgrade soil types in Korea. RESULTS: When the water table located above the freezing depth, amount of frost heaving caused by freezing the water in pavement itself was big enough to damage in pavement system, although pavement system consists of fully non-frost-susceptible materials with sufficient thickness of anti-freezing layer. The amount of frost heaving was decreased rapidly with increasing the distance between the water table and freezing depth. CONCLUSIONS: It was concluded that there is no engineering problems related with frost heaving in practical sense when the distance between freezing depth and water table is over 1.5m for having subgrade soils less than 50% of #200 sieve passing to meet specification on quality control in Korea.

Experimental and Numerical Study on Hydro-thermal Behaviour of Artificial Freezing System with Water Flow (물의 흐름을 고려한 인공동결 시스템의 열-수리 거동 연구)

  • Jin, Hyunwoo;Lee, Jangguen;Ryu, Byung Hyun;Go, Gyu-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.17-25
    • /
    • 2020
  • The artificial ground freezing method is a ground amelioration technology that does not have a permanent effect on the ground. One of the key factors that determine the efficiency and design criteria of the artificial ground freezing is the groundwater flow. Therefore, in order to accurately evaluate the behavior of the artificial ground freezing, studies on the effect of water flow on the formation of ice walls must be preceded. In this paper, experimental and numerical analyses were conducted using only pure water to maximize the effect of water flow on the formation of ice walls. A hydro-thermal coupled model for freezing behavior was proposed and the accuracy of the model was verified. Through the numerical and experimental studies, the flow rate dominates not only the formation time but also the shape of the ice wall. In addition, this study proposes a method to indirectly predict the ice wall formation time, which is expected to be highly useful for a practical application where it is difficult to visually identify ice walls.

Studies of application of artificial ground freezing for a subsea tunnel under high water pressure - focused on case histories - (고수압 해저터널 건설을 위한 동결공법 적용성에 관한 연구 - 사례를 중심으로 -)

  • Son, Young-Jin;Lee, Kyu-Won;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.5
    • /
    • pp.431-443
    • /
    • 2014
  • In this paper case studies of artificial ground freezing, which have not been applied in Korea, have been investigated for the water cut-off in a subsea tunnel under high water pressure and the most commonly used cooling mediums of brine and liquid nitrogen are examined. Since sea water with pressure has the lower freezing point than pure water, the lower temperature cooling medium is required in the application of subsea tunnel. Also, the cooling medium must have refrigeration safety and is able to reduce executing time. Brine freezing system can reuse cooling medium and is safer than liquid nitrogen freezing. But it takes more time to freeze ground and needs complex circulation plants. On the other hand, liquid nitrogen freezing system can't recycle cooling medium and may cause breathing problems or asphyxiation through oxygen deficiency. But, freezing with liquid nitrogen is fast and requires simple refrigeration equipment. Principal elements of design for ground freezing in subsea tunnel have been extracted and these elements are needed further research.

Design Verification of ECS Condenser Icing Protection System by Flight Test of T-50 Advanced Trainer (T-50 비행시험을 통한 환경제어계통 콘덴서 빙결방지 설계 검증)

  • Nam, Yong-Seog;Kim, Yeonhi;Song, Seok-Bong;Seo, Dong-Yun;Son, Won-Ik;Park, Sung-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.3
    • /
    • pp.40-44
    • /
    • 2008
  • T-50 ECS(environment control system) was designed to have freezing protection for the condenser. However during the ground and flight test, the freezing problem was occurred. This paper deals with the analysis of the freezing problem and introduces anti-freezing design using ADI(Active De-Icing) logic to solve the condenser freezing problem of T-50 ECS

  • PDF

Experimental Study of Frozen Barrier Using Artificial Ground Freezing System (인공지반동결 시스템을 이용한 동결차수벽의 실험적 연구)

  • Shin, Eun-Chul;Kang, Hee-Myeong;Park, Jeong-Jun;Kim, Sung-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.3
    • /
    • pp.35-44
    • /
    • 2009
  • The purpose of this study was to prevent spreading of contaminants from movement of underground water by creating a barrier using artificial freezing method on a soil contaminated by oils and various NAPLs. Specimens with 80% and 90% degrees of saturation were prepared to form freezing barrier using artificial freezing method. With increasing freezing time of freezing barrier, barrier was formed faster in the specimen with 90% degree of saturation by about an hour compared to the specimen with 80% degree of saturation. In addition, thinnest thickness of frozen barrier in both specimens was 50mm after 12 hours of freezing time, showing expansion of freezing area with time. The results of this study can be applied to barrier in waste reclamation sites and contaminated regions or to flow control of contaminants.

  • PDF

Evaluation criteria for freezing and thawing of tunnel concrete lining according to theoretical and experimental analysis

  • Moon, Joon-Shik;An, Jai-Wook;Kim, Hong-Kyoon;Lee, Jong-Gun;Lattner, Tim
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.349-357
    • /
    • 2022
  • Abnormal climate events are occurring frequently around the world. In particular, cold waves and heavy snow lead to damage and deterioration of facilities, which can cause loss of life or property damage, such as shortening the lifespan of facilities. Therefore, it is very important to prepare an appropriate maintenance system and to establish a strategy to cope with abnormal weather conditions. In this study, laboratory freezing experiments were performed to analyze the freeze-thaw characteristics affecting the tunnel concrete lining, and heat flow analysis was carried out based on the test results. Based on these experimental and theoretical analysis results, quantitative freeze-thaw evaluation criteria for tunnel concrete linings were proposed.

Impacts of post-mortem ageing prior to freezing on technological and oxidative properties of coarse ground lamb sausage in a model system

  • Choe, Juhui;Kim, Hyun-Wook;Farouk, Mustafa M.;Kim, Yuan H. Brad
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.1021-1028
    • /
    • 2017
  • Objective: The objective of this study was to evaluate the effects of ageing time of lamb loins prior to freezing on technological characteristics and oxidation stability of coarse ground lamb loin sausage using in a model system. Methods: Lamb loins (M. longissimus lumborum, n = 25) were aged at $-1.5^{\circ}C$ for 0, 1, 2, 3, and 8 wk and then frozen for the remaining days (a total of 30 wk). The aged/frozen/thawed lamb loins were ground, and model sausages were formulated with 75% aged/frozen/thawed lamb loin, 25% water, 1.5% sodium chloride (NaCl) and 0.3% sodium tripolyphosphate. The pH and thaw/purge loss of aged/frozen/thawed lamb loins were evaluated, and protein functionality (protein solubility and emulsifying capacity), water-holding capacity and textural properties of model sausages were determined. Cooked model sausages were vacuum-packaged in a plastic bag and displayed under continuous fluorescent natural white light ($3^{\circ}C{\pm}1^{\circ}C$). Colour and lipid oxidation of the cooked model sausages were evaluated on 0 and 21 d of display storage. Results: Ageing prior to freezing had no impact on pH and purge/thaw loss of lamb loins and the colour of cooked sausages (p>0.05) made from the loins. Lamb loins aged for at least 3 wk prior to freezing numerically improved total and myofibrillar protein solubilities (p>0.05) and emulsion activity index (p = 0.009) of meat batter, but decreased cooking loss (p = 0.003) and lipid oxidation (p<0.05) of model sausages. Conclusion: This study suggests that post-mortem ageing of raw meat prior to freezing could improve water-holding capacity and lipid oxidative stability of sausage made from the meat.