• Title/Summary/Keyword: Ground disasters

Search Result 103, Processing Time 0.023 seconds

Accident of Special Mission Helicopter and Safety Management (특수임무 헬리콥터의 사고분석과 안전관리)

  • Choi, Youn-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.4
    • /
    • pp.63-68
    • /
    • 2008
  • Compared with past, helicopters have remarkably high level of safety and accidents due to mechanical defects are decreased about 15%. Most of their duties, however, are to commit at duty area which is hard to access. Because of them, collision probability is high and also has relatively higher accident rates than other aircraft with special mission. A result of analysis is that accident rate is relative high with prevention of disasters, putting out a fire and crop-dusting missions under 500ft. In addition, most of accidents are related with human factors. According to this, it is required to pilots who carry these mission that safety education and detailed analysis about their mission.

  • PDF

EXTRACTING BASE DATA FOR FLOOD ANALYSIS USING HIGH RESOLUTION SATELLITE IMAGERY

  • Sohn, Hong-Gyoo;Kim, Jin-Woo;Lee, Jung-Bin;Song, Yeong-Sun
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.426-429
    • /
    • 2006
  • Flood caused by Typhoon and severe rain during summer is the most destructive natural disasters in Korea. Almost every year flood has resulted in a big lost of national infrastructure and loss of civilian lives. It usually takes time and great efforts to estimate the flood-related damages. Government also has pursued proper standard and tool for using state-of-art technologies. High resolution satellite imagery is one of the most promising sources of ground truth information since it provides detailed and current ground information such as building, road, and bare ground. Once high resolution imagery is utilized, it can greatly reduce the amount of field work and cost for flood related damage assessment. The classification of high resolution image is pre-required step to be utilized for the damage assessment. The classified image combined with additional data such as DEM and DSM can help to estimate the flooded areas per each classified land use. This paper applied object-oriented classification scheme to interpret an image not based in a single pixel but in meaningful image objects and their mutual relations. When comparing it with other classification algorithms, object-oriented classification was very effective and accurate. In this paper, IKONOS image is used, but similar level of high resolution Korean KOMPSAT series can be investigated once they are available.

  • PDF

Analysis of Position Accuracy for Underground Facility Using RTK-GPS (RTK-GPS를 이용한 지하시설물의 위치 정확도 분석)

  • 박운용;이종출;정성모
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.3
    • /
    • pp.237-243
    • /
    • 2003
  • The complicated facilities on the ground have begun to be laid under the ground as increasing emphasis on the beauty of cities due to centralization. But, as the kind of the facilities have been concentrated on the narrow area, accidents occur due to the difficulty of maintenance and the inaccuracy of location information. In this study, first we constructed the field test model to compare with the method of underground probing. So, we could know that the electromagnetic induction method and GPR(Ground Penetration Radar) are useful. It was acquired the position information for the underground facilities using a RTK-GPS. As the result, we have analyzed the accurate position of the underground facility and show the way improving accuracy in detecting and surveying comparing with the traditional surveying method. Also, we hope to contribute the effective maintenance and prevention of disasters to the underground facility as using underground facilities 3D position with Arcview and building the DB of exact depth and underground facilities information system.

Reducing the Falling Accident due to the Removal of Safety Fence from Gondola (곤돌라 안전난간 제거 등으로 인한 추락재해 감소방안)

  • Byun, Hyung Shik;Rhim, Jong kuk;Yang, Won Beak
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.2
    • /
    • pp.9-14
    • /
    • 2019
  • Gondola is widely used as a construction facility to perform external finishing work without using scaffolding at a construction site. However, since 2000, there have been 17 deaths from now so these risks associated with work can not be ignored. Therefore, it is expected that it will contribute greatly to prevent related disasters if introducing necessary measures to prevent repeated related disasters and installing additional safety devices. In order to eliminate the risk factor according to the operation of the gondola, it is necessary for the operator to use it to use it while the examination of each product is completed, and to use the over load Dangerous arbitrary measures such as arbitrary operation of the prevention device, removal of the safety fence for convenience of work, installation of the wire rope installed in the air, falling out of the wire rope and falling to the ground Do not perform such sealing measures so that any operation of the overload prevention device can not be done so as not to take such arbitrary measures, or wire the power supply wire to the safety fence so as not to delete the safety fence. Then, when the safety fence is removed, so that it does not become a gondola operation, or when replacing the wire rope in the air, to prevent the wire rope from coming off, Additional measures such as installing falling down prevention device may be necessary.

Damage assessment of buildings after 24 January 2020 Elazığ-Sivrice earthquake

  • Nemutlu, Omer Faruk;Balun, Bilal;Sari, Ali
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.325-335
    • /
    • 2021
  • The majority of Turkey's geography is at risk of earthquakes. Within the borders of Turkey, including the two major active faults contain the North-Eastern and Eastern Anatolia, earthquake, threatening the safety of life and property. On January 24, 2020, an earthquake of magnitude 6.8 occurred at 8:55 p.m. local time. According to the data obtained from the stations in the region, peak ground acceleration in the east-west direction was measured as 0.292 g from the 2308 coded station in Sivrice. It is thought that the earthquake with a magnitude of Mw 6.8 was developed on the Sivrice-Puturge segment of the Eastern Anatolian Fault, which is a left lateral strike slip fault, and the tear developed in an area of 50-55 km. Aftershocks ranging from 0.8 to 5.1 Mw occurred following the main shock on the Eastern Anatolian Fault. The earthquake caused severe structural damages in Elazığ and neighboring provinces. As a result of the field investigations carried out in this study, significant damage levels were observed in the buildings since it did not meet the criteria in the earthquake codes. Within the study's scope, the structural damage cases in reinforced concrete and masonry structures were investigated. Many structural deficiencies and mistakes such as non-ductile details, poor concrete quality, short columns, strong beams-weak columns mechanism, large and heavy overhangs, masonry building damages and inadequate reinforcement arrangements were observed. Requirements of seismic codes are discussed and compared with observed earthquake damage.

Precision Improvement Methodology of Geotechnical Information through Outlier Analysis (이상치 분석을 통한 3차원 지반정보 정밀도 향상 방안)

  • Lee, Boyoung;Hwang, Bumsik;Kim, Hansaem;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.2
    • /
    • pp.23-35
    • /
    • 2018
  • Recently, ground disasters such as road collapses and cavities have been frequently occurred in Seoul and downtown areas. As a result, studies on the integrated underground space map is underway as a government's solution. On the other hand, the geotechnical information underlying the integrated underground space map has been being built with more than 220 thousands borehole DB informations through the Integrated DB Center of National Geotechnical Information. To build a three-dimensional integrated underground space map based on the geotechnical information, the reliability of the geotechnical information should be verified by analyzing and evaluating the precision of the geotechnical information. Thereby, studies were conducted on the precision verification and evaluation of the constructed geotechnical information. Thereafter, it has been reviewed how to utilize geotechnical information in addition to analyzing the precision of the geotechnical information in order to visualize three dimensions in geotechnical information. As a further step to the practical DB application, a module is suggested in this study to improve the precision of geotechnical information for establishing reliable three dimensional integrated underground space maps based on the previous research results.

Comparison of SqueeSAR Analysis Method And Level Surveying for Subsidence Monitoring at Landfill Site (매립지 지반침하 모니터링을 위한 SqueeSAR 해석법과 수준측량의 비교)

  • Kim, Dal-Joo;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.137-151
    • /
    • 2018
  • Recently, National interest has been rising due to earthquakes in Gyeongju and Pohang, disasters caused by landslides, landslides, and sinkholes around construction sites, and damage caused by disasters. SAR is able to detect ground displacement in mm for wide area, collect data through satellite, predict timeliness of crustal change by time series analysis, and reduce disaster and disaster damage. The purpose of this study is to investigate the latest SAR interference analysis technique (SqueeSAR analysis technique) of Sentinel-1A satellite (SAR sensor) of European ESA for about 3 years by selecting the 1st landfill site in the metropolitan area in Incheon, The settlement amount was calculated in a time series. Especially, in order to examine the accuracy of the subsidence and subsidence tendency by the SqueeSAR analysis method, the ground level survey was compared and analyzed for the first time in Korea. Also, the tendency of the subsidence trend was predicted by analyzing the time series and correlation trend of the subsidence for three years. Through this study, it is expected that disaster prevention and disaster prevention such as sinkhole and landslide can be utilized from time series monitoring of crustal variation of the land.

Development of the Practical System for the Automated Damage Assessment (재해 피해조사 자동화를 위한 실용시스템 구축)

  • Jin, Kyeonghyeok;Kim, Youngbok;Choi, Woojung;Shim, Jaehyun
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.2
    • /
    • pp.73-78
    • /
    • 2008
  • Recently, large scale natural disasters such as floods and typhoons due to climate change have been occurring all over the world causing severe damages. Among the various efforts to reduce and recover damages, recently, advanced information technology and remote sensing techniques are applied in disaster management. In this study, a real-time automated damage estimation system using information technology and spatial imagery was developed to accomplish prompt and accurate disaster damage estimation. This system is able to estimate the damage amounts of public facilities such as roads, rivers, bridges automatically through spatial imageries including ground based digital images, aerial photos, satellite images of disaster sites. Based on these spatial imageries, the damage amounts are analyzed in the Web-GIS based analysis system. Consequently, the digital damage reports such as digital disaster information sheets and damage maps can be made promptly and accurately. This system can be a useful tool to carry out prompt disaster damage estimation and efficient disaster recovery.

  • PDF

Assessment of merging weather radar precipitation data and ground precipitation data according to various interpolation method (보간법에 따른 기상레이더 강수자료와 지상 강수자료의 합성기법 평가)

  • Kim, Tae-Jeong;Lee, Dong-Ryul;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.849-862
    • /
    • 2017
  • The increased frequency of meteorological disasters has been observed due to increased extreme events such as heavy rainfalls and flash floods. Numerous studies using high-resolution weather radar rainfall data have been carried out on the hydrological effects. In this study, a conditional merging technique is employed, which makes use of geostatistical methods to extract the optimal information from the observed data. In this context, three different techniques such as kriging, inverse distance weighting and spline interpolation methods are applied to conditionally merge radar and ground rainfall data. The results show that the estimated rainfall not only reproduce the spatial pattern of sub-hourly rainfall with a relatively small error, but also provide reliable temporal estimates of radar rainfall. The proposed modeling framework provides feasibility of using conditionally merged rainfall estimation at high spatio-temporal resolution in ungauged areas.

A Study on the Evaluation of Dynamic Behavior and Liquefaction Cau8ed by Earthquake of Sea Dike Structures on the Ground (방조제 축조 예정지반의 지진에 의한 액상화 거동 평가)

  • 도덕현;장병욱;고재만
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.43-56
    • /
    • 1993
  • The laboratory tests are performed on how the liquefaction potential of the sea dike structures on the saturated sand or silty sand seabed could be affected due to earthquake before and after construction results are given as follows ; 1. Earthquake damages to sea dike structures consist of lateral deformation, settlement, minor abnormality of the structures and differential settlement of embankments, etc. It is known that severe disasters due to this type of damages are not much documented. Because of its high relative cost of the preventive measures against this type of damages, the designing engineer has much freedom for the play of judgement and ingenuity in the selection of the construction methods, that is, by comparing the cost of the preventive design cost at a design stage to reconstruction cost after minor failure. 2. The factors controlling the liquefaction potential of the hydraulic fill structure are magnitude of earthquake(max. surface velocity), N-value(relative density), gradation, consistency(plastic limit), classification of soil(G & vs), ground water level, compaction method, volumetric shear stress and strain, effective confining stress, and primary consolidation. 3. The probability of liquefaction can be evaluated by the simple method based on SPT and CPT test results or the precise method based on laboratory test results. For sandy or silty sand seabed of the concerned area of this study, it is said that evaluation of liquefaction potential can be done by the one-dimensional analysis using some geotechnical parameters of soil such as Ip, Υt' gradation, N-value, OCR and classification of soils. 4. Based on above mentioned analysis, safety factor of liquefaction potential on the sea bed at the given site is Fs =0.84 when M = 5.23 or amax= 0.12g. With sea dike structures H = 42.5m and 35.5m on the same site Fs= 3.M~2.08 and Fs = 1.74~1.31 are obtained, respectively. local liquefaction can be expected at the toe of the sea dike constructed with hydraulic fill because of lack of constrained effective stress of the area.

  • PDF