• Title/Summary/Keyword: Ground cavity

Search Result 223, Processing Time 0.032 seconds

A Case Study on Construction of Tunnel at Limestone Cavity Site (석회암공동 분포지역에서의 터널 시공사례)

  • Kim, Si-Kyeok;Kang, In-Seop;Kim, Yong-Ha;Yoon, Il-Byung;Moon, Hoon-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.66-75
    • /
    • 2006
  • As construction for road tunnel is increasing, various geotechnical conditions can be faced during the construction stage. Especially, if the tunnel is located in limestone area, many kinds of site investigations such as in-situ boring, electrical resistance survey, TSP(Tunnel Seismic Prediction) and etc., are conducted before and during the construction. By conducting these preliminary tests, location, size, and filling materials in limestone cavities can be approximately estimated. Once some cavities which can be harmful for tunnel safety are predicted, methods for ground reinforcement and tunnel excavation, corresponding those ground conditions, have to be established and verified by measurement data and numerical analysis. If necessary, invert lining should be also considered. In this paper, by studying some cases of tunnels constructed in limestone area, predicted problems during construction and rational countermeasures for those are presented.

  • PDF

Pattern Template Construction of Buried Pipes and Cavities (매립 파이프 및 공동의 패턴 템플레이트 구축)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.80-86
    • /
    • 2017
  • The purpose of this study is to construct a pattern database of pipes and cavities buried in the ground to prevent ground subsidence. To do this, it developed a pattern template algorithm using Open CV and applied it to the results of GPR detection results of tank. As a result, proper pattern database construction was possible. Since the results of this study are based only on limited experimental results, it is expected that more realistic data will be constructed if various field data and detection results of large test beds are supplemented in the future.

DESIGN AND FABRICATION OF S-BAND DIPLEXER FOR LEO TT&C APPLICATION (저궤도 위성 관제용 S-대역 다이플렉서 설계 및 제작)

  • Ahn, Sang-Il;Park, Dong-Chul
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.397-408
    • /
    • 2007
  • Diplexer is one of core devices needed to communicate with satellite using single ground antenna by separating uplink and downlink signal. This paper presents the design of the S-band diplexer for LEO TT&C application, especially for KOMPSAT (KOrea Multi-Purpose SATellite). To cope with requirements such as high handling power, low insertion loss, air-cavity resonator with high quality factor was considered as one of design drivers. Design was started with predicting unloaded Q and equivalent circuit from the structure of air-cavity resonator. For the convenience of adjustment, the coupling factor placed between resonators was estimated from COTSEM (Electro-Magnetic) simulator, EESOF $ADS^{TM}$, and expressed with 2-order polynomial regression. To improve the isolation between transmitting part (Tx) and receiving part (Rx), the inductive and capacitive attenuation poles were inserted between $4^{th}\;and\;6^{th}$ resonator respectively. The fabricated diplexer consists of two bandpass filters and each filter has eight resonants. From the measurement, it was shown that major requirements such as 0.5dB of insertion loss, 20dB of return loss and 100dB of isolation were fully satisfied within passband.

Design of Broadband Spiral Antenna for Non-Linear Junction Detector (비선형 소자 탐지용 광대역 스파이럴 안테나의 설계)

  • Kim, Tae-Geun;Min, Kyeong-Sik;Lee, Kwang-Kun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.81-88
    • /
    • 2011
  • This paper presents a design of spiral antenna with broad bandwidth for non-linear junction detector(NLJD). An elliptical patch as radiating element located on center position of radiating surface, as well as the spiral elements on radiating surface was designed for broad bandwidth of spiral antenna. An antenna ground structure generating the multi resonance by spiral slit inserted on ground surface was also proposed. In order to realize high directivity and high gain of the proposed antenna, the cavity wall made of Fr4-epoxy and the metal cap were considered in design. As a result, the calculated gain of antenna with metal cap was improved about 3 dB with comparison of antenna without metal cap and the measured main beam directivity toward -z axis direction agreed well with calculation result. The measured axial ratio satisfied the circular polarization within -z axis ${\pm}45^{\circ}$ at design frequency bands and showed reasonable agreement with prediction.

Electrical Resistivity Imaging for Upper Layer of Shield TBM Tunnel Ceiling (쉴드 TBM터널 상부 지반 연약대 전기탐사)

  • Jung, Hyun-Key;Park, Chul-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.401-408
    • /
    • 2005
  • Recently shield TBM tunnellings are being applied to subway construction in Korean cities. Generally these kinds of tunnellings have the problems in the stability of ground such as subsidence because urban subway is constructed in the shallow depth. A sinkhole occurred on the road just above the tunnel during tunneling in Kwangju, so a survey for upper layer of the tunnel was needed. But conventional Ground Probing Radar can't be applicable due to the presence of steel-mesh screen in the shield segment, so no existent geophysical method is applicable in this site. Because the outer surface of each shield segment is electrically insulated, dipole-dipole resistivity method which is popular in engineering site investigation, was tried to this survey for the first time. Specially manufactured flexible ring-type electrodes were installed into the grouting holes at an interval of 2.4 m on the ceiling. The K-Ohm II system which has been developed by KIGAM and tested successfully in many sites, was used in this site. The system consists of 1000Volt-1Ampere constant-current transmitter, optically isolated 24 bit sigma-delta A/D conversion receiver - maximum 12 channel simultaneous measurements, and graphical automatic acquisition software for easy data quality check in real time. Borehole camera logging with circular white LED lighting was also done to investigate the state of the layer. Measured resistivity data lack of some stations due to failing opening lids of holes, shows general high-low trend well. The dipole-dipole resistivity inversion results discriminate (1) one approximately 4 meter diameter cavity (grouted but incompletely hardened, so low resistivity - less than $30{\Omega}m$), (2) weak zone (100-200${\Omega}m$), and (3) hard zone (high resistivity - more than 1000${\Omega}m$) very well for the distance of 320 meters. The 2-D inversion neglects slight absolute 3-D effect, but we can get satisfactory and useful information. Acquired resistivity section and video tapes by borehole camera logging will be reserved and reused if some problem occurs in this site in the future.

  • PDF

Tunnel Convergence and Crown Settlement Using 3D Laser Scanning (3 차원 레이저 스캐닝을 이용한 터널의 천단 및 내공 변위 관측)

  • Lee, Jae-One;Yun, Bu-Yeol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.2 s.40
    • /
    • pp.67-75
    • /
    • 2007
  • There are a number of risks in constructing tunnel-structures. Therefore, the precise and rapid observation about inside deformation of the tunnel is required to prevent these risks from occurring and to secure safety. But currently, the real situation is that the crown settlement, cavity deformation and ground surface settlement rely upon the universal mensuration which uses total station or various kinds of measuring instruments. Recently, according to improvement and progress of measuring technology, three-dimensional laser scanning is used as the method to provide data for maintaining structures. It solves the reliability problem of measuring method for the transformational volume of existing structures, provides data that enables to judge visually by three-dimensioning the shape change of structures and makes it possible to deliberate speedy countermeasure. And it can also be efficiently used in the structure maintenance and field measurement.

  • PDF

A Preliminary Study for Assessing the Risk of Road Collapse Using Accelerated Pavement Testing (도로함몰 위험도 평가를 위한 실대형 포장가속시험 기초 연구)

  • Park, Hee Mun;Kim, Yeon Tae;Choi, Ji Young;Kim, Ki Hyun
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.57-62
    • /
    • 2016
  • PURPOSES : The objective of this study is to evaluate the effect of size and depth of cavities on the pavement failure using the full-scale accelerated pavement testing. METHODS : A full-scale testbed was constructed by installing the artificial cavities at a depth of 0.3 m and 0.7 m from the pavement surface for accelerated pavement testing. The cavities were made of ice with a dimension of 0.5 m*0.5m*0.3m, and the thickness of asphalt and base layer were 0.2 m and 0.3 m, respectively. The ground penetrating radar and endoscope testing were conducted to determine the shape and location of cavities. The falling weight deflectometer testing was also performed on the cavity and intact sections to estimate the difference of structural capacity between the two sections. A wheel loading of 80 kN was applied on the pavement section with a speed of 10 km/h in accelerated pavement testing. The permanent deformation was measured periodically at a given number of repetitions. The correlation between the depth and size of cavities and pavement failure was investigated using the accelerated pavement testing results. RESULTS : It is found from FWD testing that the center deflection of cavity section is 10% greater than that of the intact section, indicating the 25% reduction of modulus in subbase layer due to the occurrence of the cavity. The measured permanent deformation of the intact section is approximately 10 mm at 90,000 load repetitions. However, for a cavity section of 0.7 m depth, a permanent deformation of 30 mm was measured at 90,000 load repetitions, which is three times greater than that of the intact section. At cavity section of 0.3 m, the permanent deformation reached up to approximately 90 mm and an elliptical hole occurred at pavement surface after testing. CONCLUSIONS : This study is aimed at determining the pavement failure mechanism due to the occurrence of cavities under the pavement using accelerated pavement testing. In the future, the accelerated pavement testing will be conducted at a pavement section with different depths and sizes of cavities. Test results will be utilized to establish the criteria of risk in road collapse based on the various conditions.

Application of Geophysical Methods to Cavity Detection at the Ground Subsidence Area in Karst (물리탐사 기술의 석회암 지반침하 지역 공동탐지 적용성 연구)

  • Kim, Chang-Ryol;Kim, Jung-Ho;Park, Sam-Gyu;Park, Young-Soo;Yi, Myeong-Jong;Son, Jeong-Sul;Rim, Heong-Rae
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.271-278
    • /
    • 2006
  • Investigations of underground cavities are required to provide useful information for the reinforcement design and monitoring of the ground subsidence areas. It is, therefore, necessary to develop integrated geophysical techniques incorporating different geophysical methods in order to accurately image and to map underground cavities in the ground subsidence areas. In this study, we conducted geophysical investigations for development of integrated geophysical techniques to detect underground cavities at the field test site in the ground subsidence area, located at Yongweol-ri, Muan-eup, Muan-gun, Jeollanam-do. We examined the applicability of geophysical methods such as electrical resistivity, electromagnetic, and microgravity to cavity detection with the aid of borehole survey results. The underground cavities are widely present within the limestone bedrock overlain by the alluvial deposits in the test site where the ground subsidences have occurred in the past. The limestone cavities are mostly filled with groundwater or clays saturated with water in the site. The cavities, thus, have low electrical resistivity and density compared to the surrounding host bedrock. The results of the study have shown that the zones of low resistivity and density correspond to the zones of the cavities identified in the boreholes at the site, and that the geophysical methods used are very effective to detect the underground cavities. Furthermore, we could map the distribution of cavities more precisely with the study results incorporated from the various geophysical methods. It is also important to notice that the microgravity method, which has rarely used in Korea, is a very promising tool to detect underground cavities.

A Design of Isoflux Radiation Pattern Microstrip Patch Antenna for LEO Medium-sized Satellites (저궤도 중형급 위성용 isoflux 방사패턴을 갖는 마이크로스트립 안테나 설계)

  • Kim, Jun-Won;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.2
    • /
    • pp.24-29
    • /
    • 2015
  • In this paper, a microstrip antenna with isoflux radiation patterns is presented for Low Earth Orbit(LEO) medium-sized satellites. Because of making isoflux patterns, the ground of proposed antenna under the patch was transform into a trapezoid for adjusting fringing field between the patch and ground. Next, the cavity walls were located at end of the ground for reducing back radiation. The proposed antenna was designed to receive S-band uplink(2.025 ~ 2.110 GHz) and the dimensions of the designed antenna with the ground are $160mm{\times}160mm{\times}40mm$ ($1.1{\lambda}{\times}1.1{\lambda}{\times}0.3{\lambda}$, ${\lambda}$ is the free-space wavelength at 2.068 GHz). Measured -10 dB bandwidth was 90 MHz(4.4 %) and it covers the required system bandwidth. Also, measured 3 dB axial ratio was 18 MHz(0.9 %). On the other hand, measured radiation patterns were isoflux patterns and its measured gain was 5.31 dBi at E-plane $46^{\circ}$ in the y-axis pol.

SIMULTANEOUS OBSERVATIONS OF PI 2 PULSATIONS ON THE SATELLITE AND GROUND-BASED MEASUREMENTS (위성 및 지상자력계에서의 PI 2 파동 동시 관측)

  • 이성환;이동훈;김관혁
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.275-285
    • /
    • 1997
  • We have investigated Pi 2 pulsations which were observed both on ground magnetometer array and by satellites. On November 9th in 1994, Pi 2 pulsations appeared globally on the 190/210 magnetometer chain and Hermanus station when two satellites(EXOS-D and ETS-VI) were located near the magnetic meridian of the 210 array. The local time of measurements covers from morning(LT=8.47hr) to afternoon(LT=20.3hr) and the bandwidth of peak frequency is found relatively small. The signals of the electric field are highly coherent with ground-based observations with the out of phase oscillations. However, the magnetic field measurement on the ETS-VI in the outer magnetosphere(L=6.60) shows no signature of Pi 2 pulsations over the same time interval and the correlation with any of the ground-based stations is found to be very weak, even through both satellites and magnetometer chain are located close to each other in local time. We suggest that this event may be a direct evidence of Pi 2 pulsations as virtual resonant modes which are localized in the plasmasphere(Lee 1996). The results show that the cavity mode oscillations can occur in the inner magnetosphere with less spectral noise compared to the outer magnetospheric case.

  • PDF