• 제목/요약/키워드: Ground Thermal conductivity

검색결과 160건 처리시간 0.024초

지열 냉난방 시스템을 위한 열전도도의 지역별 분포 (Regional Distribution of Thermal Conductivity of Ground Heat Exchanger for Geothermal Heat Pump System)

  • 임효재;손병후;정계훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.511-514
    • /
    • 2007
  • This study was performed to construct a geothermal data base about thermal conductivity of ground heat exchanger and thermal properties of grouting material which used to refill the borehole. We have acquired geothermal data sets from 39 sites over wide area of South Korea except to Jeju island. From data analysis, the range of thermal conductivity is $1.5{\sim}4.0$ W/mK. It means that thermal conductivity varies with grouting material as well as regional geology and ground water system.

  • PDF

지중 열교환기 성능 분석을 위한 지반 열물성 조사 (Investigation of ground thermal characteristics for performance analysis of borehole heat exchanger)

  • 심병완;송윤호;김형찬;조병욱;박덕원;임도형;이영민
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.587-590
    • /
    • 2005
  • A detailed geothermal characteristics survey with numerical simulations of the heat transfer in a site for ground source heat pump system is necessary for deploying a shallow geothermal utilization system. Density, specific heat, thermal diffusivity, and thermal conductivity are measured on 91 core samples from a 300 m deep borehole in KIGAM(Korea Institute of Geoscience and Mineral Resources). The heat flow is estimated from the thermal gradient and average thermal conductivity and the correlation between fracture system and hydraulic conductivity is analyzed. From the obtained ground information of the study site the performance of the ground heat pump system can be analyzed with some detailed numerical simulations for seasonal heat pump operation skill and optimal system design techniques.

  • PDF

지중열교환기 수직 보어홀 및 수평 트렌치 뒤채움재로서 모래-물 혼합물의 열전도도 측정 (Thermal Conductivity Measurement of Sand-Water Mixtures Used for Backfilling Materials of Vertical Boreholes or Horizontal Trenches)

  • 손병후
    • 설비공학논문집
    • /
    • 제20권5호
    • /
    • pp.342-350
    • /
    • 2008
  • This paper presents the results of a laboratory study on the thermal conductivity of sand (silica, quartzite, limestone and masonry sand)-water mixtures used in ground heat exchanger backfilling materials. Nearly 150 tests were performed in a thermal conductivity measuring system (TPSYS02) to characterize the relationships between the thermal conductivity of mixtures and the water content. The results show that the thermal conductivity of mixtures increases with increasing dry density and with increasing water content. The results also show that for constant water contents and a dry density value, the thermal conductivity of mixtures increases with increasing thermal conductivity of solid particles. The measurement results were also compared with the most widely used empirical prediction models for the thermal conductivity of soils.

지열원 히트펌프 시스템의 최적 설계 기법 연구 (Study on the Optimum Design of Ground Source Heat Pumps)

  • 최종민
    • 한국지열·수열에너지학회논문집
    • /
    • 제14권4호
    • /
    • pp.35-42
    • /
    • 2018
  • Among the various ground source heat pump systems, vertical-type heat pump systems have been distributed greatly. Most of the vertical-type ground source heat pump systems have been designed based on the Korean Ministry of Knowledge Economy Announcement in Korea. In this study, the design process of the vertical-type ground source heat pump system in the announcement was analyzed, and the effects of the design parameters on the ground loop heat exchanger were investigated. Borehole thermal conductivity was the highest dominant design parameter for ground loop heat exchangers. The borehole thermal conductivity was changed according to the pipe and grout thermal conductivity. For optimal design of the ground heat pump system, it is highly recommended that the design process in the announcement will be revised to adopt the various tubes and grout which have higher thermal conductivity. In addition, the certification standard for heat pump unit should be revised to develop the heat pump with a small flow rate.

지열냉난방시스템 수직형 지중열교환기 그라우트의 열적 특성에 관한 연구 (A Study on Thermal Conductivity Properties of Ground Heat Exchangers for GSHP systems)

  • 백성권;전중규;안형준
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.429-433
    • /
    • 2007
  • Cement mortar and concrete can be used as grouts but problems regarding shrinkage and the discord of coefficients of thermal expansion between grouts and HDPE pipes has to be solved. Thermal conductivities of wet condition two times larger than those of dry condition, except for pure cement mortar. The addition of sand into the cement grouts greatly increases the thermal conductivity. The addition of bentonite into the cement grouts reduces thermal conductivity thus reducing the density. Bentonite grouting must be used only below the groundwater table since bentonite grouts possesses high shrinkage property in dry condition. The addition of sand prevents the shrinkage of bentonite grouts. Bentonite manufactured in Korea can be used since they possess similar thermal conductivities with imported products. The addition of sand into the bentonite grouts greatly increases the thermal conductivity.

  • PDF

수평형 지중열교환기 설계를 위한 토양 열전도도 예측 모델 평가 (Evaluation of Conventional Prediction Models for Soil Thermal Conductivity to Design Horizontal Ground Heat Exchangers)

  • 손병후;위지혜;박상우;임지희;최항석
    • 한국지반공학회논문집
    • /
    • 제29권2호
    • /
    • pp.5-14
    • /
    • 2013
  • 지중 토양의 열 물리적 성질 중 열전도도(thermal conductivity)는 지열 히트펌프 시스템(ground-coupled heat pump systems)의 지중열교환기 설계 과정에서 매우 중요한 변수다. 토양의 열전도도는 3상 구조로 인해 함수비와 건조밀도의 영향을 많이 받는다. 본 논문에서는 수평형 지중열교환기의 트렌치 뒤채움재로 사용되는 9종류의 토양(모래-물혼합물)을 대상으로 열전도도 측정결과와 기존 상관식에 의한 계산결과를 비교하였다. 건조토인 경우, 2상 구조의 열전도도 예측모델인 준이론 모델에 의한 열전도도 계산 결과는 측정 결과와 큰 차이를 보였다. 불포화토인 경우, 기존 모델 중 Cote와 Konrad가 제시한 모델에 의한 계산 결과가 측정 결과와 가장 잘 일치하였다. 또한 토양의 열전도도와 함수비, 종류 등이 수평형 지중열교환기의 설계 길이에 미치는 영향을 고찰하였다. 뒤채움재로 사용되는 토양의 열전도도가 증가할수록 수평형 지중열 교환기의 설계 길이는 감소하였다.

토양 열전도도와 수분함량이 수평형 지중열교환기 설계 길이에 미치는 영향 (Effect of Soil Thermal Conductivity and Moisture Content on Design Length of Horizontal Ground Heat Exchanger)

  • 손병후
    • 한국지열·수열에너지학회논문집
    • /
    • 제8권1호
    • /
    • pp.21-31
    • /
    • 2012
  • This paper reviewed and evaluated some of the commonly used prediction models for thermal conductivity of soils with the experimental data. Semi-theoretical models for two-component materials were found inappropriate to estimate the thermal conductivity of dry state soils. It came out that the model developed by Cote and Konrad gave the best overall prediction results for unsaturated soils available in the literature. However, it still needs to be improved to cover a wider range of soil types and degrees of saturation. In the present study, parametric analysis is also conducted to investigate the effect of soil type and moisture content on the horizontal ground heat exchanger design. The analysis shows that horizontal ground heat exchanger pipe length is reduced with the increase of soil thermal conductivity and water content. The calculation results also show that horizontal ground heat exchanger size can be reduced to a certain extent by using backfilling material with a higher thermal conductivity of solid particles.

지중 열교환기용 시멘트 그라우트에 관한 연구 (A study on cement-based grout for ground heat exchangers)

  • 이동주;백환조;김경만
    • 산업기술연구
    • /
    • 제31권B호
    • /
    • pp.27-36
    • /
    • 2011
  • In this paper, the applicability of cement grout has been studied as an alternative to bentonite grout for backfill ground heat exchangers. To provide an optimal mixture design, the thermal conductivity of cement grout and bentonite grout with various mixture ratios were experimentally evaluated and compared. Numerical analyses using Fluent(FVM program) were applied to compare the thermal transfer efficiency of the cement grout with that of the bentonite grout used in the construction. Also the effective ground thermal conductivity was measured by In-situ thermal response test. The results showed that the thermal efficiency of the cement grout was better than the bentonite grout. Consequently, the cement grout could be an alternative with more thermal efficiency to bentonite grout for ground heat exchangers.

  • PDF

지중열전도도 측정과 지중열교환기의 열확산 특성 분석 (Measurement of Ground Thermal Conductivity and Characteristics of Thermal Diffusion by the Ground Heat Exchanger)

  • 정영만;구경민;황유진;장세용;이영호;이동혁;이재근
    • 설비공학논문집
    • /
    • 제20권11호
    • /
    • pp.739-745
    • /
    • 2008
  • This paper presents the measurement of ground thermal conductivity and the characteristics of ground thermal diffusion by a ground heat exchanger(GHE). A borehole is installed to a depth of 175 m with a diameter of 150 mm. To analyze the thermal diffusion property of the GHE, thermocouples are installed under the ground near the GHE. The outdoor temperature, the ground temperature, and the water temperature of the GHE are monitored for evaluating the characteristics of ground thermal diffusion. The ground thermal conductivity is evaluated by the in-situ thermal response tester and the line source model. It is found to be 3.08 W/$m^{\circ}C$ in this study. The ground temperature is greatly dependent on the outdoor temperature from the ground surface to 2.5 m in depth and is stable below 10 m in depth. The surface temperature of the GHE varies as a function of the temperature of circulating water. But the ground temperature at 1.5 m far from the GHE is not changed in accordance with the temperature of circulating water.

반밀폐형 지중열교환기 성능에 관한 실험적 연구 (An Experimental Study on the Performance of Semi-Closed Loop Ground Heat Exchanger)

  • 김욱중;염한길;이춘우
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.542-545
    • /
    • 2007
  • A semi-closed loop ground heat exchanger is proposed and its performance is compared through the measuring the effective thermal conductivity of the ground. In-situ tests based on the line source model are carried out to evaluate the thermal characteristics of each ground heat exchanger which has different penetration water flow rate. The test results show the increasing effective thermal conductivity of ground as the penetration water flow rate(PWFR) is increased. Therefore, the higher thermal performance of the proposed semi-closed ground heat exchanger can be expected.

  • PDF