• Title/Summary/Keyword: Ground Surface

Search Result 3,120, Processing Time 0.04 seconds

Behavior Interpretation of Discontinuity for Conservation Treatment of Standing Sculptured Buddha at the Yongamsa Temple, Korea (옥천 용암사 마애불의 보존관리를 위한 불연속면의 거동특성 해석)

  • Lee, Chan-Hee;Jeong, Yeon-Sam;Kim, Ji-Young;Yi, Jeong-Eun;Kim, Sun-Duk
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.81-91
    • /
    • 2004
  • The host rock of standing sculptured Buddha in the Yongamsa temple was macular biotite granite, which has gone through mechanical and chemical weathering. The principal rock-forming minerals are quartz, plagioclase, alkali feldspar, and biotite, the last two of which have been transformed into clay minerals and chlorite due to weathering processes. The bed rock around the Buddha statue is busily scattered with steep inclinations that are almost vertical and discontinuous planes with the strikes of $N8^{\circ}E$. The major joints have the strikes of N4 to $52^{\circ}W$ and N6 to $88^{\circ}E$ and the dips of 42 to $89^{\circ}$. Especially thee development of the joints that cross the major joints causes tile structural instability of the rock. The host rock of the Buddha image is separated into many different rock masses because of the also many different discontinuity, which group accounts for about $12{\%}$ of the rock. Thus it's estimated that the bed rock has not only plane and toppling failure but also wedge failure in all the sides. Since the earth pressure and the inclination pressure are imposed on the body of the Buddha in the basement rock, it's urgent to give a treatment of geotechnical engineering for the sake of its structural stability. The parts where serious fractures are seen should receive the hardening process using the fillers for stones. It's also necessary to introduce a landfill liner system in order to reduce the ground humidity. The rock surface of the Buddha statue are partly contaminated by lichens and bryophyte. The joints have turned into earth, which promotes the growth of weeds and plant roots. Thus biochemical treatments should also be considered to get rid of the vegetation along the discontinuous planes and prevent further biological damages.

  • PDF

A Prediction of Specific Heat Capacity for Compacted Bentonite Buffer (압축 벤토나이트 완충재의 비열 추정)

  • Yoon, Seok;Kim, Geon-Young;Baik, Min-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.199-206
    • /
    • 2017
  • A geological repository for the disposal of high-level radioactive waste is generally constructed in host rock at depths of 500~1,000 meters below the ground surface. A geological repository system consists of a disposal canister with packed spent fuel, buffer material, backfill material, and intact rock. The buffer is indispensable to assure the disposal safety of high-level radioactive waste, and it can restrain the release of radionuclides and protect the canister from the inflow of groundwater. Since high temperature in a disposal canister is released to the surrounding buffer material, the thermal properties of the buffer material are very important in determining the entire disposal safety. Even though there have been many studies on thermal conductivity, there have been only few studies that have investigates the specific heat capacity of the bentonite buffer. Therefore, this paper presents a specific heat capacity prediction model for compacted Gyeongju bentonite buffer material, which is a Ca-bentonite produced in Korea. Specific heat capacity of the compacted bentonite buffer was measured using a dual probe method according to various degrees of saturation and dry density. A regression model to predict the specific heat capacity of the compacted bentonite buffer was suggested and fitted using 33 sets of data obtained by the dual probe method.

Studies on the Frost Heave Revelation and Deformation Behaviour due to Thawing of Weathered Granite Soils (화강암 풍화토의 동상 발현 및 융해에 따른 변형 거동에 관한 연구)

  • 류능환;최중대;류영선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.61-71
    • /
    • 1995
  • Natural ground is a composite consisted of the three phases of water, air and soil paircies. Among the three components, water as a material is weU understood but soil particles are not in foundation engineering. Especially, weathered granite soil generally shows a large volumetric expansion when they freeze. And, the stability and durability of the soil have shown decreased with repetitive freezing and thawing processes. These unique charcteristics may cause various construction and management problems if the soil is used as a construction material and foundation layers. This project was initiated to investigate the soil's physical and engineering characteristics resulting from freezing and freezing-thawing processes. Research results may be used as a basic data in solving various problems related to the soil's unique characteristics. The following conclusions were obtained: The degree of decomposition of weathered granite soil in Kangwon-do was very different between the West and East sides of the divide of the Dae-Kwan Ryung. Soil particles distributed wide from very coarse to fine particles. Consistency could be predicted with a function of P200 as LL=0.8 P200+20. Permeability ranged from 10-2 to 10-4cm/sec, moisture content from 15 to 20% and maximum dry density from 1.55 to 1.73 g /cmΥ$^3$ By compaction, soil particles easily crushed, D50 of soil particles decreased and specific surface significantly increased. Shear characteristics varied wide depending on the disturbance of soil. Strain characteristics influenced the soil's dynamic behviour. Elastic failure mode was observed if strain was less than 1O-4/s and plastic failure mode was observed if strain was more than 10-2/s. The elastic wave velocity in the soil rapidly increased if dry density became larger than 1.5 g /cm$^3$ and these values were Vp=250, Vg= 150, respectively. Frost heave ratio was the highest around 0 $^{\circ}C$ and the maximum frost heave pressure was observed when deformation ratio was less than 10% which was the stability state of soil freezing. The state had no relation with frost depth. Over freezing process was observed when drainage or suction freezing process was undergone. Drainage freezing process was observed if freezing velocity was high under confined pressure and suction frost process was occurred if the velocity was low under the same confined process.

  • PDF

Enhancing the Reliability of MODIS Gross Primary Productivity (GPP) by Improving Input Data (입력자료 개선에 의한 MODIS 총일차생산성의 신뢰도 향상)

  • Kim, Young-Il;Kang, Sin-Kyu;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.132-139
    • /
    • 2007
  • The Moderate Resolution Imaging Spectroradiometer (MODIS) regularly provides the eight-day gross primary productivity (GPP) at 1 km resolution. In this study, we evaluated the uncertainties of MODIS GPP caused by errors associated with the Data Assimilation Office (DAO) meteorology and a biophysical variable (fraction of absorbed photosynthetically active radiation, FPAR). In order to recalculate the improved GPP estimate, we employed ground weather station data and reconstructed cloud-free FPAR. The official MODIS GPP was evaluated as +17% higher than the improved GPP. The error associated with DAO meteorology was identified as the primary and the error from the cloud-contaminated FPAR as the secondary constituent in the integrative uncertainty. Among various biome types, the highest relative error of the official MODIS GPP to the improved GPP was found in the mixed forest biome with RE of 20% and the smallest errors were shown in crop land cover at 11%. Our results indicated that the uncertainty embedded in the official MODIS GPP product was considerable, indicating that the MODIS GPP needs to be reconstructed with the improved input data of daily surface meteorology and cloud-free FPAR in order to accurately monitor vegetation productivity in Korea.

Adsorption Characteristics of Heavy Metal and VOCs of Pyrolysis Char from Organic Waste Sludge (유기성 폐슬러지의 열분해 차르에 대한 중금속 및 VOCs 흡착특성)

  • Park, Sang-Sook;Kang, Hwa-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.130-137
    • /
    • 2005
  • This research programme include investigation of the adsorption behavior of heavy metals and VOCs by Pyrolysis char for using landfill cover material. The volatile potions in the sludge gasified during the pyrolysis period and gave birth to porosity throughout the matrix. The result of the ad/desorption experiment of nitrogen to find out the formation of some pore by the gasification of the volatile matter, we can certify that the pyrolysis char($14.56\;m^2/g$) has increased twice more than the organic wasted sludge($6.68\;m^2/g$) in specific surface area. The pyrolysis char has the adsorption characteristic of medium type of Type II and V in BDDT classification, and showed a little micro pore. In the adsorption experiment of ethylbenzene and toluene, as a result of applying the Freundlich adsorption isotherms, the pyrolysis char was higher in the adsorptivity of ethylbenzene and toluene than the granite and the organic wasted sludge. The results of the heavy metal adsorption test for the char indicated that it had some ability of adsorption. It is suggest that pyrolysis char has some advantages for utilizing as landfill covers because the pyrolysis char can adsorb/absorb hazardous substances from the landfill sites and inhibit the ground water and soil contamination.

Analysis of Local Resident'S Perception on 'Rainwater for Drinking' Project in Developing Countries : Focusing on Vietnam Case Studies (개발도상국의 빗물식수화시설 사업에 대한 지역주민의 인식 분석 : 베트남 사례를 중심으로)

  • Lee, Minju;Han, Mooyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Drinking water deficiency is prevalent in developing countries due to contamination of surface and ground water, difficulties of water treatment, and lack of water infrastructures. 'Rainwater For Drinking (RFD)' projects are emerging as one of the effective solutions globally since RFD systems provide safe drinking water from rainwater. In RFD projects, perception of local residents toward RFD project is essential as local residents must manage their RFD systems on their own after the project finishes. This research performed survey and interview to 209 local residents, who use RFD systems, and analyzed their general perception, expected effects and feared factors toward RFD projects. Through the research, it was shown that the most of the local residents have positive perception towards RFD projects' effectiveness (41.9%) and are willing to participate (58.9%). The top three expected effect factors of the RFD projects were 'supply of safe water source', 'vitalization of local community', and 'expansion of RFD system'. The top three feared factors were 'quality of rainwater', 'technical factors of RFD system', and 'maintenance of RFD system'. The research findings indicate that development of simple water quality measuring device and education of the local residents about RFD system is necessary for better maintenance of the RFD system after the project finishes.

Evaluation of the Accuracy of IMERG at Multiple Temporal Scales (시간 해상도 변화에 따른 IMERG 정확도 평가)

  • KIM, Joo-Hun;CHOI, Yun-Seok;KIM, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.102-114
    • /
    • 2017
  • The purpose of this study was the assessment of the accuracy of Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG), a rainfall data source derived from satellite images, for evaluation of its applicability to use in ungauged or inaccessible areas. The study area was the overall area of the Korean peninsula divided into six regions. Automated Surface Observing System (ASOS) rainfall data from the Korean Meteorological Administration and IMERG satellite rainfall were used. Their average correlation coefficient was 0.46 for a 1-h temporal resolution, and it increased to 0.69 for a 24-h temporal resolution. The IMERG data quantitatively estimated less than the rainfall totals from ground gauges, and the bias decreased as the temporal resolution was decreased. The correlation coefficients of the two rainfall events, which had relatively greater rainfall amounts, were 0.68 and 0.69 for a 1-h temporal resolution. Additionally, the spatial distributions of the ASOS and IMERG data were similar to each other. The study results showed that the IMERG data were very useful in the assessment of the hydro-meteorological characteristics of ungauged or inaccessible areas. In a future study, verification of the accuracy of satellite-derived rainfall data will be performed by expanding the analysis periods and applying various statistical techniques.

Fabrication and Characterization of the Carbon Fiber Composite Sheets (탄소섬유를 이용한 열가소성 복합재료 시트 제조 및 특성)

  • Lee, Yun-Seon;Song, Seung-A;Kim, Wan Jin;Kim, Seong-Su;Jung, Yong-Sik
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.168-175
    • /
    • 2015
  • Recently, the applications of carbon fiber reinforced plastics (CFRPs) have become broader than ever when it comes to such industries as automotive, ships, aerospace and military because of their lightweight-ness and high mechanical properties. Thermosetting plastics like epoxy are frequently used as the binding matrix in CFRPs due to their high hardness, wetting characteristics and low viscosity. However, they cannot melted and remolded. For this reason, thermosetting plastic wastes have caused serious environmental problems with the production of fiber reinforced plastics. Thus, many studies have focused on the carbon fiber reinforced thermoplastics (CFRTPs) and recycling carbon fiber. In this study, recycled carbon fiber (RCF) was prepared from CFRPs using a pyrolysis method, which was employed to separate resin and carbon fiber. The degree of decomposition for epoxy resin was confirmed from thermal gravimetric analysis (TGA) and scanning electron microscope (SEM). The RCF was cut and ground to prepare a carbon fiber composite sheet (CFCS). CFCS was manufactured by applying recycled carbon fibers and various thermoplastic fibers. Various characterizations were performed, including morphological analyses of surface and cross-section, mechanical properties, and crystallization enthalpy of CFCS at different cooling conditions.

Characteristics of accumulated soil carbon and soil respiration in temperate deciduous forest and alpine pastureland

  • Jeong, Seok-Hee;Eom, Ji-Young;Park, Ju-Yeon;Lee, Jae-Ho;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.20-29
    • /
    • 2018
  • Background: For various reasons such as agricultural and economical purposes, land-use changes are rapidly increasing not only in Korea but also in the world, leading to shifts in the characteristics of local carbon cycle. Therefore, in order to understand the large-scale ecosystem carbon cycle, it is necessary first to understand vegetation on this local scale. As a result, it is essential to comprehend change of the carbon balance attributed by the land-use changes. In this study, we attempt to understand accumulated soil carbon (ASC) and soil respiration (Rs) related to carbon cycle in two ecosystems, artificially turned forest into pastureland from forest and a native deciduous temperate forest, resulted from different land-use in the same area. Results: Rs were shown typical seasonal changes in the alpine pastureland (AP) and temperate deciduous forest (TDF). The annual average Rs was $160.5mg\;CO_2\;m^{-2}h^{-1}$ in the AP, but it was $405.1mg\;CO_2\;m^{-2}h^{-1}$ in the TDF, indicating that the Rs in the AP was lower about 54% than that in the TDF. Also, ASC in the AP was $124.49Mg\;C\;ha^{-1}$ from litter layer to 30-cm soil depth. The ASC was about $88.9Mg\;C\;ha^{-1}$, and it was 71.5% of that of the AP. The temperature factors in the AP was high about $4^{\circ}C$ on average compared to the TDF. In AP, it was observed high amount of sunlight entering near the soil surface which is related to high soil temperature is due to low canopy structure. This tendency is due to the smaller emission of organic carbon that is accumulated in the soil, which means a higher ASC in the AP compared to the TDF. Conclusions: The artificial transformation of natural ecosystems into different ecosystems is proceeding widely in the world as well as Korea. The change in land-use type is caused to make the different characteristics of carbon cycle and storage in same region. For evaluating and predicting the carbon cycle in the vegetation modified by the human activity, it is necessary to understand the carbon cycle and storage characteristics of natural ecosystems and converted ecosystems. In this study, we studied the characteristics of ecosystem carbon cycle using different forms in the same region. The land-use changes from a TDF to AP leads to changes in dominant vegetation. Removal of canopy increased light and temperature conditions and slightly decreased SMC during the growing season. Also, land-use change led to an increase of ASC and decrease of Rs in AP. In terms of ecosystem carbon sequestration, AP showed a greater amount of carbon stored in the soil due to sustained supply of above-ground liters and lower degradation rate (soil respiration) than TDF in the high mountains. This shows that TDF and AP do not have much difference in terms of storage and circulation of carbon because the amount of carbon in the forest biomass is stored in the soil in the AP.

Characteristics of Elastic Waves in Sand-Silt Mixtures due to Freezing (동결에 따른 모래-실트 혼합토의 탄성파 특성)

  • Park, Junghee;Hong, Seungseo;Kim, Youngseok;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.27-36
    • /
    • 2012
  • The water in surface of the earth is frozen under freezing point. The freezing phenomenon, which causes the volume change of soils, affects on the behavior of soils and causes the significant damage on the geotechnical structures. The purpose of this study is to investigate the characteristics of elastic waves in sand-silt mixtures using small size freezing cells, which reflect the frozen ground condition due to temperature change. Experiments are carried out in a nylon cell designed to freeze soils from top to bottom. Bender elements and piezo disk elements are used as the shear and compressional wave transducers. Three pairs of bender elements and piezo disk elements are placed on three locations along the depth. The specimen, which is prepared by mixing sand and silt, is frozen in the refrigerator. The temperature of soils changes from $20^{\circ}C$ to $-10^{\circ}C$. The velocities, resonant frequencies and amplitudes of the shear and compressional waves are continuously measured. Experimental results show that the shear and compressional wave velocities and resonant frequencies increase dramatically near the freezing points. The amplitudes of shear and compressional waves show the different tendency. The dominant factors that affect on the shear wave velocity change from the effective stress to the ice bonding due to freezing. This study provides basic information about the characteristics of elastic waves due to the soil freezing.