DOI QR코드

DOI QR Code

A Prediction of Specific Heat Capacity for Compacted Bentonite Buffer

압축 벤토나이트 완충재의 비열 추정

  • Received : 2017.06.01
  • Accepted : 2017.07.04
  • Published : 2017.09.30

Abstract

A geological repository for the disposal of high-level radioactive waste is generally constructed in host rock at depths of 500~1,000 meters below the ground surface. A geological repository system consists of a disposal canister with packed spent fuel, buffer material, backfill material, and intact rock. The buffer is indispensable to assure the disposal safety of high-level radioactive waste, and it can restrain the release of radionuclides and protect the canister from the inflow of groundwater. Since high temperature in a disposal canister is released to the surrounding buffer material, the thermal properties of the buffer material are very important in determining the entire disposal safety. Even though there have been many studies on thermal conductivity, there have been only few studies that have investigates the specific heat capacity of the bentonite buffer. Therefore, this paper presents a specific heat capacity prediction model for compacted Gyeongju bentonite buffer material, which is a Ca-bentonite produced in Korea. Specific heat capacity of the compacted bentonite buffer was measured using a dual probe method according to various degrees of saturation and dry density. A regression model to predict the specific heat capacity of the compacted bentonite buffer was suggested and fitted using 33 sets of data obtained by the dual probe method.

고준위폐기물을 처분하기 위한 심층 처분시설은 지하 500~1,000 m 깊이의 암반층에 설치된다. 심층 처분시스템의 구성 요소로는 처분용기, 완충재, 뒷채움 및 근계 암반이 있다. 이 중 완충재는 심층 처분시스템에 있어 필수적인 요소인데, 완충재는 지하수 유입으로부터 처분용기를 보호하고, 방사성 핵종 유출을 저지한다. 처분용기에서 발생하는 고온의 열량은 완충재로 전파되기에 완충재의 열물성은 처분시스템의 안정성 평가에 상당히 중요하다고 할 수 있다. 완충재의 열전도도 규명에 대한 연구는 많이 진행되고 있는 반면, 비열에 대한 연구는 미진한 상태이다. 따라서 본 연구에서는 국내 경주산 압축 벤토나이트 완충재(KJ-II)에 대한 비열 추정 모델을 개발하고자 하였다. 압축 벤토나이트 완충재의 비열은 이중 탐침법을 이용하여 다양한 포화도와 건조밀도에 따라 측정하였으며, 총 33개의 실험 데이터를 토대로 회귀분석을 이용하여 경주 압축 벤토나이트의 비열을 추정할 수 있는 모델을 제시하였다.

Keywords

References

  1. M. Yoo, H.J. Choi, M.S. Lee, and S.Y. Lee, "Measurement of properties of domestic bentonite for a buffer of an HLW repository", JNFCWT, 14(2), 135-147 (2016).
  2. J.Y. Lee, D.K. Cho, H.J. Choi, and J.W. Choi, "Concept of a Korean reference disposal system for spent fuels", J. Nucl. Sci. Technol., 44(12), 1563-1573 (2007).
  3. M.V. Villar, P.L. Martin, and J.M. Barcala, "Modification of physical, mechanical and hydraulic properties of bentonite by thermo-hydraulic gradients", Eng. Geol., 81, 284-297 (2006).
  4. Swedish Nuclear Fuel Supply Co/Division KBS, "Final storage of spent nuclear fuel-KBS3", Svensk Karnbranslehantering AB Report, Stockholm (1983).
  5. Lee, M.S. Lee, H.J. Choi, J.Y. Lee, and I.Y. Kim, "Establishment of the concept of buffer for an HLW repository: An approach", Korea Atomic Energy Research Institute Report, KAERI/TR-5824 (2014).
  6. Karnland, "Chemical and mineralogical characterization of the bentonite buffer for the acceptance control procedure in a KBS-3 repository", Svensk Karn-branslehantering AB Report, SKB TR-10-60 (2010).
  7. W.J. Cho, J.W. Lee, and S. Kwon, "An empirical model for the thermal conductivity of compacted bentonite and a bentonite-sand mixture", Heat Mass Transf, 47, 1385-1393 (2011). https://doi.org/10.1007/s00231-011-0800-1
  8. W.J. Cho, J.W. Lee, and C.H. Kang, "A compilation and evaluation of thermal and mechanical properties of compacted bentonite for the performance assessment of engineered barriers in the high-kevek waste repository", Korea Atomic Energy Research Institute Report, KAERI/TR-1826 (2001).
  9. J.W. Lee, H.J. Choi, and J.Y. Lee, "Thermal conductivity of compacted bentonite as a buffer material for a high-level radioactive waste repository", Ann. Nucl. Energy, 94, 848-855 (2016), https://doi.org/10.1016/j.anucene.2016.04.053
  10. A.M. Tang, Y.J. Cui, and T.T. Lee, "A study on the thermal conductivity of compacted bentonite", Appl. Clay Sci., 41, 181-189 (2008). https://doi.org/10.1016/j.clay.2007.11.001
  11. M.S. Lee, H.J. Choi, J.O. Lee, and J.P. Lee, "Improvement of the thermal conductivity of a compact bentonite buffer", Korea Atomic Energy Research Institute Report, KAERI/TR-5311 (2013),
  12. M. Wang, Y.F. Chen, S. Zhou, R. Hu, and C.B. Zhou, "A homogenization-based model for the effective thermal conductivity of bentonite-sand-based buffer material", Int. J. Heat Mass Transf., 68, 43-49 (2015). https://doi.org/10.1016/j.icheatmasstransfer.2015.08.007
  13. C.S. Lee, J.W. Lee, H.J. Choi, G.Y. Kim, and K. Kim, "Thermo-hydro-mechanical modeling of CIEMAT column test : Part 1- before hydration", Korea Atomic Energy Research Institute Report, KAERI/TR-621 (2015).
  14. K.L. Bristow, R.D. White, and G.J. Klutenberg, "Comparison of single and dual probes for measuring soil thermal properties with transient heating", Aust. J. Soil Res., 32, 447-464 (1994). https://doi.org/10.1071/SR9940447
  15. Decagon Devices, Inc., KD2 pro thermal properties analyzer. Operator's manual (2016).
  16. H. Park, "Thermal conductivities of unsaturated Korean weathered granite soils", Master thesis, KAIST (2011).
  17. S. Yoon, S.R. Lee, Y.S. Kim, G.Y. Kim, and K. Kim, "Prediction of ground thermal properties from thermal response test", J. Korean Geotech Soc., 32(7) 5-14 (2016). https://doi.org/10.7843/KGS.2016.32.7.5
  18. J.W. Lee, W.J. Cho, and S. Kwon, "Thermo-hydro-mechanical properties of reference bentonite buffer for a Korean HLW repository", Tunnel and Underground Space, 21(4), 264-273 (2011).
  19. Japan Nuclear Cycle Development Institute, "H12 project to establish technical basis for HLW disposal in Japan", Supporting Report 2, JNC, Japan (1999).
  20. K. Wieczorek and R. Miehe, "Measurement of thermal parameters of the HE-E buffer material", PEBS, European Commission (2011).
  21. S. Yoon, S.R. Lee, Y.T. Kim, and G.H. Go, "Estimation of saturated hydraulic conductivity of Korean weathered granite soils using a regression analysis", Geomech. Eng., 9(1), 101-113 (2015). https://doi.org/10.12989/gae.2015.9.1.101
  22. J.H. Anthony, "Probability and Statistics for Engineers and Scientists", Third Edition, THOMSON BROOKS/COLE (2007).
  23. K.K. Phoon, A. Santoso, and S.T. Quek, "Probabilistic analysis of soil-water characteristic curves", ASCE J. Geotech. Geoenviron. Eng., 136(3), 445-455 (2010). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000222
  24. I.H. Lee, "Easy flow regression analysis", Hannarae Publishing Corporation (2014).
  25. Data solution Consulting Team, "SPSS Statistics Descriptive Statistics and Correlation Analysis", SPSS Data Solution (2013).
  26. S. Yoon, S.R. Lee, J.Y. Park, J.H. Seong, and D.H. Lee, "A prediction of entrainment growth for debris-flow hazard analysis using multiple regression analysis", J. Korean Soc. Hazard Mitig., 15(6), 353-360 (2015). https://doi.org/10.9798/KOSHAM.2015.15.6.353
  27. G.H. Go, S.R. Lee, S. Yoon, and H.B. Kang, "Design of spiral coil PHC energy pile considering effective borehole thermal resistance and groundwater advection effects", Appl. Energy, 125, 165-178.

Cited by

  1. A Prediction of Thermal Expansion Coefficient for Compacted Bentonite Buffer Materials vol.16, pp.3, 2018, https://doi.org/10.7733/jnfcwt.2018.16.3.339
  2. 국내 벤토나이트 완충재의 함수특성곡선 평가 vol.17, pp.1, 2019, https://doi.org/10.7733/jnfcwt.2019.17.1.29
  3. Study on Thermal, Hydraulic, and Mechanical Properties of KURT Granite and Gyeongju Bentonite vol.17, pp.suppl, 2017, https://doi.org/10.7733/jnfcwt.2019.17.s.65