• Title/Summary/Keyword: Ground Surface

Search Result 3,128, Processing Time 0.038 seconds

Estimates of Surface Explosion Energy Based on the Transmission Loss Correction for Infrasound Observations in Regional Distances (인프라사운드 대기 전파 투과손실 보정을 통한 원거리 지표폭발 에너지 추정)

  • Che, Il-Young;Kim, Inho
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.478-489
    • /
    • 2020
  • This study presents an analysis of infrasonic signals from two accidental explosions in Gwangyang city, Jeonnam Province, Korea, on December 24, 2019, recorded at 12 infrasound stations located 151-435 km away. Infrasound propagation refracted at an altitude of ~40 km owing to higher stratospheric wind in the NNW direction, resulting in favorable detection at stations in that direction. However, tropospheric phases were observed at stations located in the NE and E directions from the explosion site because of the strong west wind jet formed at ~10 km. The transmission losses on the propagation path were calculated using the effective sound velocity structure and parabolic equation modeling. Based on the losses, the observed signal amplitudes were corrected, and overpressures were estimated at the reference distance. From the overpressures, the source energy was evaluated through the overpressure-explosive charge relationship. The two explosions were found to have energies equivalent to 14 and 65 kg TNT, respectively. At the first explosion, a flying fragment forced by an explosive shock wave was observed in the air. The energy causing the flying fragment was estimated to be equivalent to 49 kg or less of TNT, obtained from the relationship between the fragment motion and overpressure. Our infrasound propagation modeling is available to constrain the source energy for remote explosions. To enhance the confidence in energy estimations, further studies are required to reflect the uncertainty of the atmospheric structure models on the estimations and to verify the relationships by various ground truth explosions.

Field Pullout Tests and Stability Evaluation of the Pretension Soil Nailing System (프리텐션 쏘일네일링 시스템의 현장인발시험 및 안정성 평가)

  • Kim, Hong-Taek;Choi, Young-Geun;Park, Si-Sam;Kim, Berm-Suk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.27-40
    • /
    • 2003
  • In the present study, a newly modified soil nailing technology named as the PSN(Pretension Soil Nailing) system is proposed. Effects of various factors related to the design of the pretension soil nailing system, such as the length of a sheathing pipe and the fixed cone, are examined throughout a series of the displacement-controlled field pull-out tests. 9 displacement-controlled field pull-out tests are performed in the present study and the pretension forces are also evaluated based on the measurements. In addition, both short-term and long-term characteristics of pull-out deformations of the newly proposed PSN system are analyzed and compared with those of the general soil nailing system by carrying out the stress-controlled field pull-out tests. A numerical approach is further made to determine a postulated failure surface as well as a minimum safety factors of the proposed PSN system using the shear strength reduction technique and the $FLAC^{2D}$ program. Global minimum safety factors and local safety factors at various excavation stages computed in case of the PSN system are analyzed throughout comparisons with the results expected in case of the general soil nailing system. An efficiency of the PSN system is also dealt with by analyzing the wall-facing deformations and the adjacent ground surface settlements.

  • PDF

The Study on Assessment of Roughness Coefficient for Designing Wind Farm in Jeju Island (제주도 풍력발전단지 설계를 위한 조도계수 산정에 대한 연구)

  • Ko, Jung-Woo;Quan, He Chun;Lee, Byung-Gul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.15-22
    • /
    • 2012
  • The variation in the wind speed with height above ground is called the wind shear profile. In the field of wind resource assessment, analysts typically use one of two mathematical relations to characterize the measured wind shear profile: the logarithmic profile (log law) and the power law profile (power law). The logarithmic law uses the surface roughness as a parameter, and the power law uses the power law exponent as a parameter. The shape of the wind shear profile typically depends on several factors, most notably the roughness of the surrounding terrain and the stability of the atmosphere. Since the atmospheric stability changes with season, time of day, and meteorological conditions, the surface roughness and the power law exponent also tends to change in time. For this study, Using the observed data from Met-mast, located in Pyeongdae, Handong in Jeju. we used the matlab and windograper to calculate roughness length and the law exponents. These calculations are similar to reference the data, but they have different ranges. In the ocean case, each reference data and calculated data was the same, but the crop area is higher than the earlier studies. In addition, the agricultural village is lower than the earlier studies.

Distribution of Water Temperature and Common Squid Todarodes pacificus Paralavae around Korean Waters in 2013, 2014 (2013-2014년 한국주변해역 수온과 살오징어 유생분포)

  • Kim, Yoon-Ha;Lee, Chung Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • Field observation for oceanic conditions and paralarvae of the common squid, Todarodes pacificus in Korean waters were sampled with the Bongo net (diameter: 60 cm, mesh size: $333{\mu}m$) by using oblique tow method with the oceanographic research vessel (Tamgu 12 and Tamgu 20) around Korean waters (middle of the Yellow Sea, northern part of the East China Sea, East Sea) in 2013 and 2014 was carried out. The observation in the Yellow Sea and the northern part of the East China Sea was done in August, 2013 and in the East Sea it was repeated at seven times from June, 2013 to September, 2014. The paralarvae in August of 2013 was not found in the Yellow Sea and one paralarvae was found in the northern part of the East China Sea. In the East Sea, 39 paralarvae during whole observation period were found, mantle length of paralarvae was from 1.7 to 13.5 mm. Surface water temperature in the Yellow Sea was $30^{\circ}C$, and cold water mass lower than $10^{\circ}C$ was occupied in the deep layer than 30 m. In the northern part of the East China Sea, surface water temperature was $31^{\circ}C$, and higher water temperature above $20^{\circ}C$ was found in deeper than 50 m. In the East Sea, optimum temperature for survival, $15-24^{\circ}C$, was existed shallower than 75 m.

3D Shape Embodiment of Dam using the 3D Laser Scanning System (3차원 레이저 스케닝 시스템을 이용한 댐체의 3차원 형상구현)

  • Shon, Ho-Woong;Yun, Bu-yeol;Park, Dong-il;Pyo, Ki-Won
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.377-386
    • /
    • 2006
  • There is an inseparable relation between human race and engineering work. As world developed into highly industrialized society, a diversity of large structures is being built up correspondently to limited topographical circumstance. Though large structures are national establishments which provide us with convenience of life, there are some disastrous possibilities which were never predicted such as ground subsidence and degradation. It is very difficult to analyze the volume of total metamorphosis with the relative displacement measurement system which is now used and it is impossible to know whether there is structural metamorphosis within a permissible range of design or not. In this research with an object of 13-year-old earthen dam, through generating point-cloud which has 3D spatial coordinates(x, y, z) of this dam by means of 3D Laser Scanning, we can get real configuration data of slanting surface of this dam with this method of getting a number of 3D spatial coordinates(x, y, z). It gives 3D spatial model to us and we can get various information of this dam such as the distance of slanting surface of dam, dimensions and cubic volume. It can be made full use of as important source material of reinforcement and maintenance works to detect previously the bulging of the dam through this research.

  • PDF

Characteristics of the soil loss and soil salinity of upland soil in saemangeum reclaimed land in western South Korea

  • Kim, Young Joo;Lee, Su Hwan;Ryu, Jin Hee;Oh, Yang Yeol;Lee, Jeong Tae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.316-316
    • /
    • 2017
  • The objective of this study is to estimate quantitatively soil salinity and soil loss at upland soils in agriculture land region in Saemangeum reclaimed land on the south Korea coasts. Soil loss and soil salinity are the most critical problem at reclaimed tidal saline soil in Korea. The several thematic maps of research area such as land cover map, topographic and soil maps, together with tabular precipitation data used for soil erosion and soil salinity calculation. Meteorological data were measured directly as air temperature, wind speed, solar radiation, and precipitation. The experiment was conducted 2% sloped lysimeter ($5.0m{\times}20.0m$) with 14 treatments and it were separated by low salinity division (LSD) and high salinity division (HSD) install. The cation content in ground water increased during time course, but in the case of land surface water the content was variable, and $K^+$ was lower than that of $Na^+$ and $Mg^{2+}$. At the LSD under rainproof condition, the salinity was directly proportional to soil water content, but at the HSD the tendency was no reversed. In condition of rainproof, the amount of soil salinity was higher at the HSD than at the LSD. Positive correlation was obtained between the soil water content and available phosphorous content at the rainfall division, but there was no significance at the surface soil of the rainproof division. Sodium adsorption ratio and anion contents in soil were repressed in the order of vinyl-mulching > non-mulching > bare field. According to the result of analyzing soil loss, soil loss occurred in a vinyl-mulching, a non-mulching and a bare field in size order, and also approximately 11.2 ton/ha soil loss happened on the reclaimed land area. The average soil loss amount by the unit area takes place in a non-mulching and bare field a lot. Our results indicate that soluble salt control and soil erosion are critical at reclaimed tidal saline soil and the results can provide some useful information for deciding management plans to reduce soil loss and salt damage for stable crop production and diverse utilization or cultivation could be one of the management options to alleviate salt damage at reclaimed tidal saline soil in Korea.

  • PDF

Improvement of Short Range Performance of Meteor Burst Path with Buried Antenna (지하 매설형 안테나를 이용한 근거리 유성 버스트 통신의 특성개선)

  • 김병철;김기채;이무영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.788-801
    • /
    • 1998
  • Meteor Burst Communication can provide effective and economical means of communication where long distance VHF NLOS data transmission is needed ; often ranges more than 1000 km. It has been, however, so far considered unsuitable for short distance application because of phenomenal decrease in burst durations, which leads to decreation of total duty rate of the system. This paper extensively analyzes characteristics of shot distance MB(Meteor Burst) path and shows the low duty rate may be improved by increasing burst rate through adapting antennal beam width to cover entire hot-spot region in the space and, by compensating effective burst length throughcutting down man-made noises introduced by antennal. Based on the analysis, we are developed a small-opening-cavity antennal, especially designed for short distance MB path. In operation, the antenna is to be buried under ground surface so as to improve directivity and reduces noise introduction. The antennal exhibits power gain of 3 dB with 90 degree beam width and thus enables to illuminate entire hot-spot regions with the elevation angle of 8-90 degree which is the case of transmission less than 100 km. Directivity horizontal to earth surface is suppressed to minimum which enables to cut man-made noises from near-by sources down to more than 3 dB from the level reported with conventional 4 element Yagi. A series of experiments performed on 100km MB paths have conformed that, with the antenna installed at receiving site, the burst rate and duration time have been noticed to increase by 10 and 20 percent respectively from the values obtained by conventional 4-element Yagi antennal under same testing condition.

  • PDF

A Fully Coupled Hydrogeomechanical Numerical Analysis of Rainfall Impacts on Groundwater Flow in Slopes and Slope Stability (사면 내의 지하수 유동과 사면의 안정성에 대한 강수 영향의 완전 연동된 수리지질역학적 수치 해석)

  • 김준모
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.5-16
    • /
    • 2002
  • A hydrogeomechanical numerical model is presented to evaluate rainfall impacts on groundwater flow in slopes and slope stability. This numerical model is developed based on the fully coupled poroelastic governing equations for groundwater flow in deforming variably saturated geologic media and the Galerkin finite element method. A series of numerical experiments using the model developed are then applied to an unsaturated slope under various rainfall rates. The numerical simulation results show that the overall hydromechanical slope stability deteriorates, and the potential failure nay initiate from the slope toe and propagate toward the slope crest as the rainfall rate increases. From the viewpoint of hydrogeology, the pressure head and hence the total hydraulic head increase as the rainfall rate increases. As a result, the groundwater table rises, the unsaturated zone reduces, the seepage face expands from the slope toe toward the slope crest, and the groundwater flow velocity increases along the seepage face. From the viewpoint of geomechanics, the horizontal displacement increases, and the vertical displacement decreases toward the slope toe as the rainfall rate increases. This may result from the buoyancy effect associated with the groundwater table rise as the rainfall rate increases. As a result, the overall deformation intensifies toward the slope toe, and the unstable zone, in which the factor of safety against shear failure is less than 1, becomes thicker near the slope toe and propagates from the slope toe toward the slope crest. The numerical simulation results also suggest that the potential tension failure is likely to occur within the slope between the potential shear failure surface and the ground surface.

THE EFFECT OF THE CITRIC ACID ON THE REPAIR OF THE DENUDED ROOTS TRANSPLANTED IN PERIODONTALLY INVOLVED EXTRACTION SOCKETS IN DOGS (성견 치주질환 발치와에 이식된 구연산 처리 치근의 치유에 대한 연구)

  • Chi, Jun-Soon;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.2
    • /
    • pp.261-281
    • /
    • 1993
  • The author transplanted periodontally-diseased teeth which had been treated with citric acid into a clinically healthy extraction sockets and periodontally-affected extraction sockets, and compared with the healing processes within these tissues. Recipient sites were prepared by surgically removing a part of alveolar bone of premolars of adults dogs, placing elastic orthodontic ligatures for 8weeks, thereby inducing periodontal disease. The diseased roots were extracted and transplanted into healthy extraction sockets, and these were designated as control group 1. Diseased roots transplanted into diseased sockets were designated as control group 2. Diseased roots which had been root planed, treated with citric acid and transplanted into healthy sockets were designated as experimental group 1, while identically treated roots which had been transplanted into diseased sockets were designated as experimental group 2. Observations were made at weeks 2, 8 and 12, with following results. 1. At week 2, experimental group 2 showed some inflammatory cell infiltration in the connective tissue above the extraction sockets, while control groups showed less inflammatory or foreign body reactions throughout the experiment. 2. In both control groups, root surface resorption was observed throughout the experiment, while experimental groups showed a little resorption. 3. Control group 1 & 2 showed ankylosis by newly-formed bone ground the resorbed root surfaces, while experimental group 1 & 2 displayed collagen fibers which are not functionally-arranged, with random, loose arrangement or parallel orientation to root surfaces, and newly-formed bone outside of them. 4. In both control groups & experimental groups which had been transplanted into a clinically healthy extraction sockets & periodontally affected extraction sockets groups, histological differences were not significant. 5. Root resorption or ankylosis in control group 1 & 2 had increased quantitatively as experiment progressed. 6. New bone formation developed from the base and lateral wall of extraction sockets. In both control groups & experimental groups, root surfaces lying next to the upper portion of extraction sockets showed little alveolar bone formation and surrounded by connective tissue fiber at weeks 2 & 8, while at weeks 12, they did show alveolar bone formation. 7. At week 12, experimental group 2 showed numerous cells which appeared to be periodontal ligament cells, with functionally arranged connective tissue fibers between the roots and alveolar bone.

  • PDF

On the Reclamation Earthwork Calculation using the Hermite and Spline Function (Hermite와 Spline 함수를 이용한 매립토공량 계산)

  • Mun, Du-Yeoul;Lee, Yong-Hee;Lee, Mun-Jae
    • Journal of Navigation and Port Research
    • /
    • v.26 no.4
    • /
    • pp.473-479
    • /
    • 2002
  • The estimation of the volume of a pit excavation is often required in many surveying, soil mechanics, highway applications and transportation engineering situations. The calculation of earthwork plays a major role in plan or design of many civil engineering projects such as seashore reclamation, and thus it has become very important to improve the accuracy of earthwork calculation. In this paper the spot height method, proposed formulas(A, B, C), and chen and Line method are compared with the volumes of the pits in these examples. And we proposed an algorithm of finding a terrain surface with the free boundary conditions and both direction spline method drawback, i.e., the modeling curves form peak points at the joints. To avoid this drawback, the cubic spline polynomial was chosen as the methematical model of the new method. From the characteristics of the cubic spline polynomial, the modeling curve of the new method was smooth and matched the ground profile well. As a result of this study, algorithm of proposed three methods to estimate pit excavation volume provided a better accuracy than spot height, chamber, chen and Lin method. And the mathematical model mentioned makes is thought to give a maximum acccuracy in estimating the volume of a pit excavation.