• Title/Summary/Keyword: Ground Simulator

Search Result 220, Processing Time 0.029 seconds

Numerical Analysis of Moving Type and Static Type Electrodynamic Suspension Simulator with Superconducting Levitation Magnet (초전도 부상자석을 이용한 동적 및 정지형 반발식 자기부상 시험기의 수치해석)

  • Lee, E.R.;Bae, D.K.;Chung, Y.D.;Yoon, Y.S.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.49-54
    • /
    • 2009
  • This paper presents the numerical simulation results on the moving type electrodynamic suspension (EDS) simulator and static type EDS simulator using high-Tc superconducting (HTS) levitation magnet. The levitation force of the EDS system is formed by the reaction between the moving magnet and the fixed ground conductor. The possible two ways to simulate the EDS system were simulated in this paper by using finite element method (FEM). The first way was the moving type simulator which consists of the fixed HTS magnet and the moving ground conductor. The second way was the static type simulator which consists of the fixed magnet, the fixed ground conductor and the ac current supply system. To verify the characteristics of high speed EDS system with the moving type simulator heavy, large and fast moving ground conductor is needed. The static type simulator can get the characteristics of the high speed EDS system by applying equivalent ac current to velocity, therefore it does not need large moving part. The static type EDS simulator, which can consist of an HTS magnet, the fixed ground conductor(s), an AC power supply and the measuring devices, also test the effect of the shape of the ground conductor easily. The plate type ground conductor made stronger levitation force than ring type ground conductor. Although the outer diameter 335 mm ring type ground conductor (Ring3) was larger than the outer diameter 235 mm ground conductor (Ring2), the levitation force by Ring2 was stronger than that by Ring3. From the calculation results on this paper, the consideration of the magnetic flux distribution according to the levitation height should be included in the process of the ground conductor design.

Analysis on the Characteristics of the Superconducting Electrodynamic Suspension According to the Variation of the Ground Conductor (지상도체 변화에 따른 초전도 반발식 자기부상 특성 해석)

  • Bae, Duck-Kweon;Cho, Han-Wook;Lee, Jong-Min;Han, Hyung-Suk;Lee, Chang-Young;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1159_1160
    • /
    • 2009
  • This paper presents the numerical simulation results on the supercodnucting electrodynamic suspension (EDS) simulator according to the variation of the ground conductor. The levitation force of the EDS system is formed by the reaction between the moving magnet and the fixed ground conductor. The possible way to simulate the EDS system were simulated in this paper by using finite element method (FEM). The static type simulator which consists of the fixed magnet, the fixed ground conductor and the ac current supply system. To verify the characteristics of high speed EDS system with the moving type simulator heavy, large and fast moving ground conductor is needed. The static type simulator can get the characteristics of the high speed EDS system by applying equivalent ac current to velocity, therefore it does not need large moving part. The static type EDS simulator, which can consist of an HTS magnet, the fixed ground conductor(s), an AC power supply and the measuring devices, also test the effect of the shape of the ground conductor easily. The plate type ground conductor made stronger levitation force than ring type ground conductor. Although the outer diameter 335 mm ring type ground conductor (Ring3) was larger than the outer diameter 235 mm ground conductor (Ring2), the levitation force by Ring2 was stronger than that by Ring3. From the calculation results on this paper, the consideration of the magnetic flux distribution according to the levitation height should be included in the process of the ground conductor design.

  • PDF

Development of the SVPG(Sungkyunkwan Univ. Virtual Proving Ground) : System Configuration and Application of the Virtual Proving Ground (가상주행시험장(SVPG) 개발: 가상주행시험장의 시스템 구성 및 운영)

  • 서명원;구태윤;권성진;신영수;조기용;박대유
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.195-202
    • /
    • 2002
  • By using modeling and simulation. today's design engineers are simultaneously reducing time to market and decreasing the cost of development, while increasing the quality and reliability of their products. A driving simulator is the best example of this method and allows virtual designs of control systems, electronic systems, mechanical systems and hydraulic system of a vehicle to be evaluated before costly prototyping. The objective of this Paper is to develop the virtual Proving: ground using a driving simulator and to show its capabilities of an automotive system development tool. For this purpose, including a real-time vehicle dynamics analysis system, the PC-based driving simulator and the virtual proving ground are developed by using VR(Virtual Reality) techniques. Also ABS HIL(Hardware-In-the-Loop ) simulation is performed successfully.

Utilization and Effect of Satellite Simulator for COMS Operation Preparation (천리안위성 운용 준비를 위한 위성시뮬레이터 활용효과 분석)

  • Lee, Hoon-Hee;Kim, Bang-Yeop;Park, Bong-Kyu;Yang, Koon-Ho;Baek, Myung-Jin;Chun, Yong-Sik
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.84-92
    • /
    • 2010
  • Prior to the launch of COMS Satellite, the validation of the ground system for satellite operations has been performed using the real COMS, the satellite simulator and etc. In particular this paper will focus on the part of ground system test on which the simulator is used and it will present the usage, range and importance of the simulator utilization. Furthermore, it describes the practical experience on and its effect using Simulator for system validation, and suggests approaches to overcome a partial limitation.

Interface Design of the Simulator Having Engineering Components Model (공학 컴포넌트 모델을 가지는 시뮬레이터 연동구조 설계)

  • Ahn, Byung-Jun;Kwon, Seung-Man;Wang, Ji-Hyun;Pyun, Jai-Jeong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.6
    • /
    • pp.480-485
    • /
    • 2013
  • This paper include the results of the software interface design for the ground vehicle simulators. This design allows us to upgrade the simulator easily by exchanging the engineering model when we need to change the function of algorithm or data of a simulator. That is because a main part of simulator is composed of reusable model.

The Study on developing on the Roaming simulator to estimate of the communication performance of Communication-Based Train Control system (무선통신기반 열차제어시스템의 통신성능평가를 위한 로밍시뮬레이터 개발에 관한 연구)

  • Lee, Kang-Mi;Jo, Hyun-Jeong;Shin, Kyung-Ho;Kim, Jong-Ki;Kim, Baek-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1454-1460
    • /
    • 2006
  • This paper assesses communication performance using a roaming simulator when roaming occurs between onboard and ground wireless communication devices for communication based train control system (CBTC). Generally, CBTC is defined as the system regularly collecting location and speed data from each train, transmitting distance information to a train, and optimizing train speed according to train performance. When a train is moving, roaming is also performed to continuously transmit and receive train control information between the ground controller and the train. To operate CBTC, packet loss rate should be less than 1%, roaming time less than 100ms during roaming. We developed a roaming simulator to check communication performance before installing ground and onboard equipments on actual wireless sections. The roaming simulator to be introduced in this paper is for roaming simulation before conducting CBTC field test, which is the project to develop Urban Rail Signaling System Standards, being conducted in KRRI. The simulation consists of one onboard wireless communication device and three ground wireless communication devices, and the roaming simulator estimate packet loss rate occurring during roaming process of the two devices. Therefore, if you use the roaming simulator before the field test, you can predict various problems to occur in actual environment and reduce time, cost and people necessary to resolve these problems.

  • PDF

CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements

  • Kuai, Le;Haan, Fred L. Jr.;Gallus, William A. Jr.;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.11 no.2
    • /
    • pp.75-96
    • /
    • 2008
  • A better understanding of tornado-induced wind loads is needed to improve the design of typical structures to resist these winds. An accurate understanding of the loads requires knowledge of near-ground tornado winds, but observations in this region are lacking. The first goal of this study was to verify how well a CFD model, when driven by far field radar observations and laboratory measurements, could capture the flow characteristics of both full scale and laboratory-simulated tornadoes. A second goal was to use the model to examine the sensitivity of the simulations to various parameters that might affect the laboratory simulator tornado. An understanding of near-ground winds in tornadoes will require coordinated efforts in both computational and physical simulation. The sensitivity of computational simulations of a tornado to geometric parameters and surface roughness within a domain based on the Iowa State University laboratory tornado simulator was investigated. In this study, CFD simulations of the flow field in a model domain that represents a laboratory tornado simulator were conducted using Doppler radar and laboratory velocity measurements as boundary conditions. The tornado was found to be sensitive to a variety of geometric parameters used in the numerical model. Increased surface roughness was found to reduce the tangential speed in the vortex near the ground and enlarge the core radius of the vortex. The core radius was a function of the swirl ratio while the peak tangential flow was a function of the magnitude of the total inflow velocity. The CFD simulations showed that it is possible to numerically simulate the surface winds of a tornado and control certain parameters of the laboratory simulator to influence the tornado characteristics of interest to engineers and match those of the field.

Design and Development of an Advanced Real-Time Satellite Simulator

  • Kang, Ja-Young;Kim, Jae-Moung;Chung, Seon-Jong
    • ETRI Journal
    • /
    • v.17 no.3
    • /
    • pp.1-16
    • /
    • 1995
  • An advanced real-time satellite simulator (ARTSS) has been developed to support the ground operations activities of the ETRI satellite control system, such as testing of the system facilities, validation of flight control procedures, verification of satellite commands as well as training of the ground operators. The design of ARTSS is based on the top-down approach and makes use of a modular programming to ensure flexibility in modification and expansion of the system. Graphics-based monitoring and control facilities enhance the satellite simulation environment. The software spacecraft model in ARTSS simulates the characteristics of a geostationary communication satellite using a momentum bias three-axis stabilization control technique. The system can be also interfaced with a hardware payload subsystem such as Ku-band communication transponder to enhance the simulator capability. Therefore, ARTSS is a high fidelity satellite simulation tool that can be used on low-cost desk top computers. In this paper, we describe the design features, the simulation models and the real-time operating functions of the simulator.

  • PDF

Analysis of Risk Voltage for Grounding Electrode by Injection of Earth Leakage Current

  • Gil, Hyoung-Jun;Kim, Dong-Woo;Kim, Dong-Ook;Lee, Ki-Yeon;Moon, Hyun-Wook;Kim, Hyang-Kon;Kil, Gyung-Suk
    • International Journal of Safety
    • /
    • v.8 no.2
    • /
    • pp.9-14
    • /
    • 2009
  • This paper describes analysis of risk voltage for grounding electrode where earth leakage current is injected. To assess risk voltage of grounding electrode, the grounding simulator and CDEGS program were used to obtain measured data and theoretical results of this study. The grounding simulator was composed of a hemispherical water tank, AC power supply, a movable potentiometer, and test grounding electrodes. The shapes of grounding electrode model was ground rod. The potential rise was measured by grounding simulator, and the touch and step voltages were computed by CDEGS program. As a consequence, the potential rise of ground rod abruptly decreases with increasing the distance from the grounding electrode to the point to be tested. The touch voltage above the ground rod was low, but the step voltage was high. The measured results were compared with the computer calculated data and were known in good agreement.

The Potential Interference between Ground Rod and Counterpoise (봉상 접지전극-수평매설 접지전극 상호간의 전위간섭)

  • Lee, Bok-Hee;Lee, Su-Bong;Jeong, Dong-Cheol
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.351-354
    • /
    • 2006
  • This paper deals with the potential interferences between ground rod and counterpoise. The ground potential rise and coefficient of potential interference were measured by using the hemispherical water tank grounding simulator and calculated from CDEGS program as functions of the configuration and size of grounding electrodes and the distance between grounding electrodes. The ground potential un and potential interference coefficient strongly depend on the distance between grounding electrodes, the arrangement and size of grounding electrodes.

  • PDF