• Title/Summary/Keyword: Ground Response

Search Result 1,780, Processing Time 0.022 seconds

Variability of Seismic Demand According In the Selection the Earthquake Ground Motion Groups (지진기록 선택에 따른 요구지진 하중의 변화)

  • 황수민;한상환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.417-422
    • /
    • 2004
  • It is the challenging task to predict seismic demand for structural design. In current seismic design provisions such as UBC, NEHRP, ATC 3-06, the seismic demand is calculated using the response spectrum with response modification factor (R). This paper investigates variability of seismic demand according to selecting the earthquake ground motion groups. Different Earthquake sets used by Miranda, Riddell and Seed selected were used in this study. Earthquake sets selected by authors include 62 sets of near field ground motion and 19 sets one pulse ground motion. Linear Elastic Response Spectrum (LERS), the variation of performance points of calculated by Capacity Spectrum Method (CSM) were considered with respect to the different sets of earthquake ground motions.

  • PDF

Assessment of Code-specified Ground Motion Selection Criteria with Accurate Selection and Scaling Methods - II Seismic Response (구조물 동적해석을 위한 현행 내진설계기준의 입력 지반 운동 선정 조건 타당성 평가 - II 지진응답)

  • Ha, Seong Jin;Han, Sang Whan;Oh, Jang Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.181-188
    • /
    • 2017
  • Current seismic design provisions such as ASCE 7-10 provide criteria for selecting ground motions for conducting response history analysis. This study is the sequel of a companion paper (I - Ground Motion Selection) for assessment of the ASCE 7-10 criteria. To assess of the ASCE 7-10 criteria, nonlinear response history analyses of twelve single degree of freedom (SDF) systems and one multi-degree of freedom (MDF) system are conducted in this study. The results show that the target seismic demands for SDF can be predicted using the mean seismic demands over seven and ten ground motions selected according to the proposed method within an error of 30% and 20%, respectively

Response of the structures excited by the near fault ground motion (Near Fault Ground Motion에 의한 구조물의 거동 특성 연구)

  • Kim, Jae-Kwan;Kim, Jung-Han
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.42-46
    • /
    • 2005
  • Ground motions with the near fault effects are studied for the seismic design and the analysis of structures. The characteristics of the velocity pulse by the forward directivity are studied and the relations between velocity pulse and earthquake magnitude are investigated. The elastic response spectra of the near fault ground motion are compared with these of the far fault ground motion. And effects on the behaviors of structures are studied by the analysis of the elastic and the inelastic single degree of freedom system in terms of the response spectrum and the ductility demand.

  • PDF

Nonlinear Response and Phase Angle Characteristics of Earthquake Ground Motions (지진동의 위상 특성과 비선형 응답)

  • Woo, Woon-Taek;Park, Tae-Won;Jung, Ran
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.497-504
    • /
    • 2002
  • The characteristics of harmonic phase angles and phase angle differences contained in earthquake ground motions such as El Centre 1940 NS, Taft1 1952 NS, Hachinohe 1968 NS and Mexico 1985 are figured, which have been mostly overlooked in contrast with the importance placed on harmonic amplitudes. Recently, performance based design method is used for seismic design and seismic retrofitting, which needs nonlinear response analysis, there must be earthquake ground accelerations which contain the phase angle and the phase angle difference characteristics of the zone considered to be constructed building structures. To make clear the importance of phase angle differences, 4-earthquake ground motions are normalized by 200 gal and nonlinear response characteristics of normalized 4-earthquake ground motions are compared.

  • PDF

Generation of Artificial Earthquake Ground Motions using Nonstationary Random Process-Modification of Power Spectrum Compatible with Design Response Spectrum- (Nonstationary Random Process를 이용한 인공지진파 발생 -설계응답스펙트럼에 의한 파워스펙트럼의 조정-)

  • 김승훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.61-68
    • /
    • 1999
  • In the nonlinear dynamic structural analysis the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well known that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary modulation function and a power spectral density function to describe such non-stationary characteristics. Satio and Wen(1994) proposed a non-stationary stochastic process model to generate earthquake ground motions which are compatible with design reponse spectrum at sites in Japan. this paper shows the process to modify power spectrum compatible with target design response spectrum for generating of nonstationary artificial earthquake ground motions. Target reponse spectrum is chosen by ATC14 to calibrate the response spectrum according to a give recurrence period.

  • PDF

Estimation of floor response spectra induced by artificial and real earthquake ground motions

  • Pu, Wuchuan;Xu, Xi
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.377-390
    • /
    • 2019
  • A method for estimating the floor response spectra (FRS) of elastic structures under earthquake excitations is proposed. The method is established based on a previously proposed direct estimation method for single degree of freedom systems, which generally overestimates the FRS of a structure, particularly in the resonance period range. A modification factor is introduced to modify the original method; the modification factor is expressed as a function of the period ratio and is determined through regression analysis on time history analysis results. Both real and artificial ground motions are considered in the analysis, and it is found that the modification factors obtained from the real and artificial ground motions are significantly different. This suggests that the effect of ground motion should be considered in the estimation of FRS. The modified FRS estimation method is further applied to a 10-story building structure, and it is verified that the proposed method can lead to a good estimation of FRS of multi-story buildings.

Application of frequency domain analysis for generation of seismic floor response spectra

  • Ghosh, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.17-26
    • /
    • 2000
  • This paper presents a case study with a multi-degree-of-freedom (MDOF) system where the Floor Response Spectra (FRS) have been derived from a large ensemble of ground motion accelerograms. The FRS are evaluated by the frequency response function which is calculated numerically. The advantage of this scheme over a repetitive time-history analysis of the entire structure for each accelerogram of the set has been highlighted. The present procedure permits generation of FRS with a specified probability of exceedence.

Spatial Variation Characteristics of Seismic Motions through Analysis of Earthquake Records at Fukushima Nuclear Power Plant (후쿠시마 원자력발전소 지진 계측 기록 분석을 통한 지진파의 공간적 변화 특성 평가)

  • Ha, Jeong-Gon;Kim, Mi Rae;Kim, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.223-232
    • /
    • 2021
  • The spatial variation characteristics of seismic motions at the nuclear power plant's site and structures were analyzed using earthquake records obtained at the Fukushima nuclear power plant during the Great East Japan Earthquake. The ground responses amplified as they approached the soil surface from the lower rock surface, and the amplification occurred intensively at about 50 m near the ground. Due to the soil layer's nonlinear characteristics caused by the strong seismic motion, the ground's natural frequency derived from the response spectrum ratio appeared to be smaller than that calculated from the shear wave velocity profile. The spatial variation of the peak ground acceleration at the ground surface of the power plant site showed a significant difference of about 0.6 g at the maximum. As a result of comparing the response spectrums at the basement of the structure with the design response spectrum, there was a large variability by each power plant unit. The difference was more significant in the Fukushima Daiichi site record, which showed larger peak ground acceleration at the surface. The earthquake motions input to the basement of the structure amplified according to the structure's height. The natural frequency obtained from the recorded results was lower than that indicated in the previous research. Also, the floor response spectrum change according to the location at the same height was investigated. The vertical response on the foundation surface showed a significant difference in spectral acceleration depending on the location. The amplified response in the structure showed a different variability depending on the type of structure and the target frequency.

Stochastic response of suspension bridges for various spatial variability models

  • Adanur, Suleyman;Altunisik, Ahmet C.;Soyluk, Kurtulus;Dumanoglu, A. Aydin
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1001-1018
    • /
    • 2016
  • The purpose of this paper is to compare the structural responses obtained from the stochastic analysis of a suspension bridge subjected to uniform and partially correlated seismic ground motions, using different spatial correlation functions commonly used in the earthquake engineering. The spatial correlation function employed in this study consists of a term that characterizes the loss of coherency. To account for the spatial variability of ground motions, the widely used four loss of coherency models in the literature has been taken into account in this study. Because each of these models has its own characteristics, it is intended to determine the sensitivity of a suspension bridge due to these losses of coherency models which represent the spatial variability of ground motions. Bosporus Suspension Bridge connects Europe to Asia in Istanbul is selected as a numerical example. The bridge has steel towers that are flexible, inclined hangers and a steel box-deck of 1074 m main span, with side spans of 231 and 255 m on the European and Asian sides, respectively. For the ground motion the filtered white noise model is considered and applied in the vertical direction, the intensity parameter of this model is obtained by using the S16E component of Pacoima Dam record of 1971 San Fernando earthquake. An analytically simple model called as filtered white noise ground motion model is chosen to represent the earthquake ground motion. When compared with the uniform ground motion case, the results obtained from the spatial variability models with partial correlation outline the necessity to include the spatial variability of ground motions in the stochastic dynamic analysis of suspension bridges. It is observed that while the largest response values are obtained for the model proposed by Harichandran and Vanmarcke, the model proposed by Uscinski produces the smallest responses among the considered partially correlated ground motion models. The response values obtained from the uniform ground motion case are usually smaller than those of the responses obtained from the partially correlated ground motion cases. While the response values at the flexible parts of the bridge are totally dominated by the dynamic component, the pseudo-static component also has significant contributions for the response values at the rigid parts of the bridge. The results also show the consistency of the spatial variability models, which have different characteristics, considered in this study.

Response Analysis of Block-Bearing Structure due to Tunnel Excavation in Clay Ground (점토지반에서 터널굴착에 따른 상부 블록구조물의 거동분석)

  • Son, Moorak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.175-183
    • /
    • 2014
  • This study investigates the response of structures to tunnelling-induced ground movements in clay ground, varying tunnel excavation condition (tunnel depth and diameter), tunnel construction condition (ground loss), and tunnel ground condition (soft clay and stiff clay). Four-story block-bearing structures have been used because the structures can easily be characterized of the extent of damages with crack size and distribution. Numerical parametric studies have been used to investigate of the response of structures to varying tunnelling conditions. Numerical analysis has been conducted using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The results of structure responses from various parametric studies have been integrated to consider tunnel excavation condition, tunnel construction condition, and tunnel ground condition and provide a relationship chart among them. Using the chart, the response of structures to tunnelling can easily be evaluated in practice in clay ground.