• Title/Summary/Keyword: Ground Remote Sensing

Search Result 839, Processing Time 0.031 seconds

An Approach to Measurement of Water Quality Factors and its Application Using NOAA satellite Data

  • Jang, Dong-Ho;Jo, Gi-Ho;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.363-370
    • /
    • 1999
  • Remotely sensed data is regarded as a potentially effective data source for the measurement of water quality and for the environmental change of water bodies. In this study, we measured the spectral reflectance by using multi-spectral image of low resolution camera(LRC) which will be loaded in the OSMI multi-purpose satellite(KOMPSAT) scheduled to be launched on 1999 to use the data in analyzing water pollution. We also investigated the possibility of extraction of water quality factors in water bodies by using remotely sensed low resolution data such as NOAA/AVHRR. In this study, Shiwha-District and Sang-Sam Lake was set up as the subject areas for the study. In this part of the study, we measured the spectral reflectance of the water surface to analyze the radiance of the water bodies in low resolution spectral band and tried to analyze the water quality factors in water bodies by using radiance feature from another remotely sensed data such as NOAA/AVHRR. As the method of this study, first, we measured the spectral reflectance of the water surface by using SFOV( Single Field of View) to measure the reflectance of water quality analysis from every channel in LRC spectral band(0.4~O.9${\mu}{\textrm}{m}$). Second, we investigated the usefulness of ground truth data and the LRC data by measuring every spectral reflectance of water quality factors. Third, we analyzed water quality factors by using the radiance feature from another remotely sensed data such as NOAA/AVHRR. We carried out ratio process of what we selected Chlorophyll-a and suspended sediments as the first factors of the water quality. The results of the analysis are below. First, the amount of pollutants of Shiwha-Lake has been increasing every you since 1987 by factors of eutrophication. Second, as a result of the reflectance, Chlorophyll-a represented high spectral reflectance mainly around 0.52${\mu}{\textrm}{m}$ of green spectral band, and turbidity represented high spectral reflectance at 0.57${\mu}{\textrm}{m}$. But suspended sediments absorbed high at 0.8${\mu}{\textrm}{m}$. Third, Chlorophyll-a and suspended sediments could have a distribution chart as a result of the water quality analysis by using NOAA/AVHRR data.

  • PDF

Calibration and Validation Activities for Earth Observation Mission Future Evolution for GMES

  • LECOMTE Pascal
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.237-240
    • /
    • 2005
  • Calibration and Validation are major element of any space borne Earth Observation Mission. These activities are the major objective of the commissioning phases but routine activities shall be maintained during the whole mission in order to maintain the quality of the product delivered to the users or at least to fully characterise the evolution with time of the product quality. With the launch of ERS-l in 1991, the European Space Agency decided to put in place a group dedicated to these activities, along with the daily monitoring of the product quality for anomaly detection and algorithm evolution. These four elements are all strongly linked together. Today this group is fully responsible for the monitoring of two ESA missions, ERS-2 and Envisat, for a total of 12 instruments of various types, preparing itself for the Earth Explorer series of five. other satellites (Cryosat, Goce, SMOS, ADM-Aeolus, Swarm) and at various levels in past and future Third Party Missions such as Landsat, J-ERS, ALOS and KOMPSAT. The Joint proposal by the European Union and the European Space Agency for a 'Global Monitoring for Environment and Security' project (GMES), triggers a review of the scope of these activities in a much wider framework than the handling of single missions with specific tools, methods and activities. Because of the global objective of this proposal, it is necessary to put in place Multi-Mission Calibration and Validation systems and procedures. GMES Calibration and Validation activities will rely on multi source data access, interoperability, long-term data preservation, and definition standards to facilitate the above objectives. The scope of this presentation is to give an overview of the current Calibration and Validation activities at ESA, and the planned evolution in the context of GMES.

  • PDF

GEOMETRY OF SATELLITE IMAGES - CALIBRATION AND MATHEMATICAL MODELS

  • JACOBSEN KARSTEN
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.182-185
    • /
    • 2005
  • Satellite cameras are calibrated before launch in detail and in general, but it cannot be guaranteed that the geometry is not changing during launch and caused by thermal influence of the sun in the orbit. Modem satellite imaging systems are based on CCD-line sensors. Because of the required high sampling rate the length of used CCD-lines is limited. For reaching a sufficient swath width, some CCD-lines are combined to a longer virtual CCD-line. The images generated by the individual CCD-lines do overlap slightly and so they can be shifted in x- and y-direction in relation to a chosen reference image just based on tie points. For the alignment and difference in scale, control points are required. The resulting virtual image has only negligible errors in areas with very large difference in height caused by the difference in the location of the projection centers. Color images can be related to the joint panchromatic scenes just based on tie points. Pan-sharpened images may show only small color shifts in very mountainous areas and for moving objects. The direct sensor orientation has to be calibrated based on control points. Discrepancies in horizontal shift can only be separated from attitude discrepancies with a good three-dimensional control point distribution. For such a calibration a program based on geometric reconstruction of the sensor orientation is required. The approximations by 3D-affine transformation or direct linear transformation (DL n cannot be used. These methods do have also disadvantages for standard sensor orientation. The image orientation by geometric reconstruction can be improved by self calibration with additional parameters for the analysis and compensation of remaining systematic effects for example caused by a not linear CCD-line. The determined sensor geometry can be used for the generation? of rational polynomial coefficients, describing the sensor geometry by relations of polynomials of the ground coordinates X, Y and Z.

  • PDF

THE ANALYSIS OF PSM (POWER SUPPLY MODULE) FOR MULTI-SPECTRAL CAMERA IN KOMPSAT

  • Park Jong-Euk;Kong Jong-Pil;Heo Haeng-Pal;Kim Young Sun;Chang Young Jun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.493-496
    • /
    • 2005
  • The PMU (Payload Management Unit) in MSC (Multi-Spectral Camera) is the main subsystem for the management, control and power supply of the MSC payload operation. The PMU shall handle the communication with the BUS (Spacecraft) OBC (On Board Computer) for the command, the telemetry and the communications with the various MSC units. The PMU will perform that distributes power to the various MSC units, collects the telemetry reports from MSC units, performs thermal control of the EOS (Electro-Optical Subsystem), performs the NUC (Non-Uniformity Correction) function of the raw imagery data, and rearranges the pixel data and output it to the DCSU (Data Compression and Storage Unit). The BUS provides high voltage to the MSC. The PMU is connected to primary and redundant BUS power and distributes the high unregulated primary voltages for all MSC sub-units. The PSM (Power Supply Module) is an assembly in the PMU implements the interface between several channels on the input. The bus switches are used to prevent a single point system failure. Such a failure could need the PSS (Power Supply System) requirement to combine the two PSM boards' bus outputs in a wired-OR configuration. In such a configuration if one of the boards' output gets shorted to ground then the entire bus could fail thereby causing the entire MSC to fail. To prevent such a short from pulling down the system, the switch could be opened and disconnect the short from the bus. This switch operation is controlled by the BUS.

  • PDF

OBSERVATION OF MICROPHYTOBENTHIC BIOMASS IN HAMPYEONG BAY USING LANDSAT TM IMAGERY

  • Choi, Jae-Won;Won, Joon-Sun;Lee, Yoon-Kyung;Kwon, Bong-Oh;Koh, Chul-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.441-444
    • /
    • 2005
  • The goal of this study is to investigate the relationship between microphytobenthic biomass and normalized vegetation index obtained from Landsat TM images. Monitoring a seasonal change of microphytobenthic biomass in the sand bar is specifically focused. Since the study area, Hampyeong Bay, was difficult to approach, we failed to obtain ground truths simultaneously on satellite image acquisition. Instead, chlorophyll-a concentration in surface top layer was measured on different dates for microphytobenthic biomass. Although data were acquired on different dates, a correlation between the field and satellite images was calculated for investigating general trends of seasonal change. NDVI and tasseled cap transformed images were also used to review the variation of microphytobenthic biomass by using Landsat TM and ETM+ images. Atmosphere effects were corrected by applying COST model. Seaweeds were also flouring in the same season of microphytobentic blooming. Songseok-ri area was minimally affected by seaweeds from February to May, and selected as a test site. NDVI value was classified into high-, moderate-, and low-grade. It was well developed over fme-grained sediments and rapidly reduced from May to November over sand bar. In this bay, correlation between grain size and microphytobenthic biomass was clearly seen. From the classified NDVI and tasseled cap transformed data, we finally constructed spatial distribution and seasonal variation maps of microphytobenthic biomass.

  • PDF

Detection and Classification of Major Aerosol Type Using the Himawari-8/AHI Observation Data (Himawari-8/AHI 관측자료를 이용한 주요 대기 에어로솔 탐지 및 분류 방법)

  • Lee, Kwon-Ho;Lee, Kyu-Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.493-507
    • /
    • 2018
  • Due to high spatio-temporal variability of amount and optical/microphysical properties of atmospheric aerosols, satellite-based observations have been demanded for spatiotemporal monitoring the major aerosols. Observations of the heavy aerosol episodes and determination on the dominant aerosol types from a geostationary satellite can provide a chance to prepare in advance for harmful aerosol episodes as it can repeatedly monitor the temporal evolution. A new geostationary observation sensor, namely the Advanced Himawari Imager (AHI), onboard the Himawari-8 platform, has been observing high spatial and temporal images at sixteen wavelengths from 2016. Using observed spectral visible reflectance and infrared brightness temperature (BT), the algorithm to find major aerosol type such as volcanic ash (VA), desert dust (DD), polluted aerosol (PA), and clean aerosol (CA), was developed. RGB color composite image shows dusty, hazy, and cloudy area then it can be applied for comparing aerosol detection product (ADP). The CALIPSO level 2 vertical feature mask (VFM) data and MODIS level 2 aerosol product are used to be compared with the Himawari-8/AHI ADP. The VFM products can deliver nearly coincident dataset, but not many match-ups can be returned due to presence of clouds and very narrow swath. From the case study, the percent correct (PC) values acquired from this comparisons are 0.76 for DD, 0.99 for PA, 0.87 for CA, respectively. The MODIS L2 Aerosol products can deliver nearly coincident dataset with many collocated locations over ocean and land. Increased accuracy values were acquired in Asian region as POD=0.96 over land and 0.69 over ocean, which were comparable to full disc region as POD=0.93 over land and 0.48 over ocean. The Himawari-8/AHI ADP algorithm is going to be improved continuously as well as the validation efforts will be processed by comparing the larger number of collocation data with another satellite or ground based observation data.

Estimation Method of Evapotranspiration through Vegetation Monitoring over Wide Area (식생해석을 통한 광역증발산량 추정 방법의 개발)

  • 신사철
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.1
    • /
    • pp.81-88
    • /
    • 1996
  • Remote sensing technique is a probable means to estimate distribution of actual evapotranspiration over wide area in connection with regional characteristics of vegetation and landuse. Factors controlling evapotranspiration from ground are air temperature, humidity, wind, radiation, soil moisture and so on. Not only the vegetation influences directly the evapotranspiration, but also these factors strongly influnce the vegetation at the area. Therefore we can expect high correlation between the evapotranspiration and the vegetation. To grasp the state of vegetation at any point, NDVI calculated from NOAA/AVHRR data is utilized. It can be considered that evapotranspiration at a forest region is linearly proportional to the NDVI. Here, a model which adopts a direct method to estimate actual evapotranspiration is developed by using the relationship between NDVI and evapotranspiration. This method makes possible to estimate evapotranspiration of Korean Peninsula including North Korea where enough meteorological and hydrological data are unavailable.

  • PDF

An analysis of Electro-Optical Camera (EOC) on KOMPSAT-1 during mission life of 3 years

  • Baek Hyun-Chul;Yong Sang-Soon;Kim Eun-Kyou;Youn Heong-Sik;Choi Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.512-514
    • /
    • 2004
  • The Electro-Optical Camera (EOC) is a high spatial resolution, visible imaging sensor which collects visible image data of the earth's sunlit surface and is the primary payload on KOMPSAT-l. The purpose of the EOC payload is to provide high resolution visible imagery data to support cartography of the Korean Peninsula. The EOC is a push broom-scanned sensor which incorporates a single nadir looking telescope. At the nominal altitude of 685Km with the spacecraft in a nadir pointing attitude, the EOC collects data with a ground sample distance of approximately 6.6 meters and a swath width of around 17Km. The EOC is designed to operate with a duty cycle of up to 2 minutes (contiguous) per orbit over the mission lifetime of 3 years with the functions of programmable gain/offset. The EOC has no pointing mechanism of its own. EOC pointing is accomplished by right and left rolling of the spacecraft, as needed. Under nominal operating conditions, the spacecraft can be rolled to an angle in the range from +/- 15 to 30 degrees to support the collection of stereo data. In this paper, the status of EOC such as temperature, dark calibration, cover operation and thermal control is checked and analyzed by continuously monitored state of health (SOH) data and image data during the mission life of 3 years. The aliveness of EOC and operation continuation beyond mission life is confirmed by the results of the analysis.

  • PDF

Estimating Leaf Nitrogen Content of Rice Canopies Using Ground Sensors and Satellite Imagery (지상센서와 위성영상을 이용한 벼 군락의 엽 질소함량 추정)

  • Hong Suk-Young;Kim Yi-Hyun;Choi Chul-Uong;Lee Jee-Min;Lee Jae-Jung;Rim Sang-Kyu;Kwak Han-Kang
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.193-197
    • /
    • 2006
  • 지상측정 및 위성영상탑재 광학센서를 이용하여 벼 주요 생육시기에 대한 군락의 엽질소 함량을 추정하였다. 6월부터 10월에 걸쳐 주요 생육시기 $5{\sim}6$회에 걸쳐 Orbview 및 QuickBird와 같이 4m 이하의 고해상도 다중영상을 취득하였다. 위성영상 취득일에 가능한한 맞추어 인공광원을 사용하는 2종의 능동형 광학 (G)NDVI 센서를 이용한 벼 군락의 반사특성을 측정하였으며 동시에 식물체 샘플링을 통한 생육량, 엽면적지수, 엽질소 함량 등을 분석하였다. 시기별 영상의 분광반사특성 및 (G)NDVI와 벼 생육량 및 엽질소 함량과의 관계를 알아보기 위해 상관분석 및 회귀분석을 수행하였다. 지상센서 및 위성영상 유래 (G)NDVI의 값을 서로 비교해 보면 전체적으로 지상센서를 이용하여 측정한 (G)NDVI값이 위성영상 유래 (G)NDVI값보다 크게 나타났다. 하지만 두 센서 모두 엽면적지수 변화에 따른 (G)NDVI의 변화를 살펴보면 엽면적지수가 2 정도가 될 때까지는 함께 증가하다가 2보다 커지면서는 변화가 없이 머무르는 경향은 같게 나타났다. 엽면적지수의 변화는 군락의 엽질소함량 변화와 선형적인 관계($R^2=0.80$)로 나타났다. 분얼기부터 성숙초기까지의 자료를 이용하여 지상센서 및 위성영상 유래 (G)NDVI를 이용한 벼 군락의 엽질소 함량과의 관계를 살펴보니 지수함수적 관계($R^2=0.90$)로 나타났다. 위성영상 유래 (G)NDVI를 이용한 벼 군락의 엽질소 함량 추정식을 이용하여 신평면 최고쌀 생산단지에 대한 엽질소 함량 지도를 작성하였다.

  • PDF

A Cost Effective Reference Data Sampling Algorithm Using Fractal Analysis (프랙탈 분석을 통한 비용효과적인 기준 자료추출알고리즘에 관한 연구)

  • 김창재
    • Spatial Information Research
    • /
    • v.8 no.1
    • /
    • pp.171-182
    • /
    • 2000
  • Random sampling or systematic sampling method is commonly used to assess the accuracy of classification results. In remote sensing, with these sampling method, much time and tedious works are required to acquire sufficient ground truth data. So , a more effective sampling method that can retain the characteristics of the population is required. In this study, fractal analysis is adopted as an index for reference sampling . The fractal dimensions of the whole study area and the sub-regions are calculated to choose sub-regions that have the most similar dimensionality to that of whole-area. Then the whole -area s classification accuracy is compared to those of sub-regions, respectively, and it is verified that the accuracies of selected sub regions are similar to that of full-area . Using the above procedure, a new kind of reference sampling method is proposed. The result shows that it is possible to reduced sampling area and sample size keeping up the same results as existing methods in accuracy tests. Thus, the proposed method is proved cost-effective for reference data sampling.

  • PDF