• Title/Summary/Keyword: Ground Level

Search Result 2,522, Processing Time 0.027 seconds

Numerical study on stability and deformation of retaining wall according to groundwater drawdown

  • Hyunsung Lim;Jongjeon Park;Jaehong Kim;Junyoung Ko
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.195-202
    • /
    • 2023
  • In this study, the ground settlement in backside of retaining wall and the behavior of the retaining wall were analyzed according to the method of groundwater drawdown due to excavation by using two-dimensional(2D) finite element analysis. Numerical analysis was performed by applying 1) fixed groundwater level, 2) constant groundwater drawdown, and 3) transient groundwater drawdown. In addition, the behavior of the retaining wall according to the initial groundwater level, ground conditions, and surcharge pressure in backside of retaining wall was evaluated. Based on the numerical analysis results, it was confirmed that when the groundwater level is at 0.1H from the ground surface (H: Excavation soil height), the wall displacement and ground settlement are not affected by the method of groundwater drawdown, regardless of soil conditions (dense or loose) and surcharge pressure. On the other hand, when the groundwater level is at 0.5H from the ground surface, the method of groundwater drawdown was found to have a significant effect on wall displacement and ground settlement. In this case, the difference in ground settlement presents by up to 4 times depending on the method of groundwater drawdown, and the surcharge load could increase the ground settlement by up to 1.5 times.

The Variation of Slope Stability by Ground Water Level in Railway Lines (지하수위에 따른 철도사면의 안정성 변화)

  • Kim, Hyun-Ki;Shin, Min-Ho;Shin, Ji-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.789-795
    • /
    • 2008
  • Slope stability is affected by various factors. For safety management of slopes, monitoring systems have been widely constructed along railway lines. The representative data from the systems are variations of ground profile such like ground water level and pore water pressure etc. and direct displacement measured by ground clinometer and tension wire sensor. Slopes are mainly effected by rainfall and rainfall causes the decrease of factor of safety(FOS). Because FOS varies linearly by the variation of ground water level and pore pressure, it has a weak point that could not define the time and proper warning sign to secure the safety of the train. In this study, alternative of FOS such as reliability index and probability of failure is applied to slope stability analysis introducing the reliability concept. FOS, reliability index, probability of failure and velocity of probability of failure of the slopes by variation of ground water level are investigated for setting up the specification of safety management of slopes. By executing case study of a slope(ILLO-IMSUNGLI), it is showed to be applied to specification of safety management.

  • PDF

A study on Design Planning of the National Rental Apartment's Community Space Located on Ground Level Floor for Aging Society (고령화 사회에 따른 국민임대아파트 1층 공유공간의 계획방향에 대한 연구)

  • Chae, Min Seok;Lee, Ju Hyun;Lee, Hyun Soo
    • KIEAE Journal
    • /
    • v.8 no.1
    • /
    • pp.71-79
    • /
    • 2008
  • Lower birth rate and higher elder people are serious social problem in Korea. In 2003, the total birth rate is 1.19 per person, that record is lowest among OECD country. In 2005, Korea has been the aging society with 9.0% in aged population rate. Increasing of aged population results in elder estrangement and confliction with other generations. The social problem can be solved in some degree by improving housing environment and many kinds of welfare program. This study suggests a solution of the problem by applying community space located on ground level floor. The ground level floor of apartment has many physical benefits like connection to the earth, extension, safeness for the aged and child. in case of the National Rental apartment, small residential area and high rate of elder, child, the disabled make the ground level floor useful space for community. According to case study, almost the National Rental apartment hasn't enough facilities supporting various generations and don't supply comfortable environment. So, this study presents how to design the National Rental Apartment's community space located on ground level floor.

A Concept for improving the Level of Autonomy of an LEO Satellite (저궤도 위성의 자율성 수준 향상을 위한 개념 제안)

  • Jeon, Moon-Jin;Kim, Eunghyun;Lim, Seong-Bin
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • The ground station which operates the LEO satellite performs monitoring state of health of the satellite, sending the commands for the imaging mission of receiving the images during about 10 minutes of contact time. To finish the planned procedure in limited contact time, specific level of autonomy is applied in the satellite and the ground system. For example, the attitude and orbit control logic has high level of autonomy because it must be operated alone for long period without operator intervention. On the other hand, the fault management logic has relatively low level of autonomy because of that failure detection and safing operation are performed on-board, whereas failure identification and recovery are on-ground operation. The level of autonomy of the satellite affects also the ground operation. The command set for mission operation is generated by ground system. If the satellite has higher level of autonomy, some of operation currently done on-ground can be performed on-board, so the ground operation can be simplified. In this paper, we discuss the level of autonomy and propose a concept for improving the level of autonomy of an LEO satellite.

Groundwater Level Prediction Using ANFIS Algorithm (ANFIS 알고리즘을 이용한 지하수수위 예측)

  • Bak, Gwi-Man;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1235-1240
    • /
    • 2019
  • It is well known that the ground water level changes rapidly before and after the earthquake, and the variation of ground water level prediction is used to predict the earthquake. In this paper, we predict the ground water level in Miryang City using ANFIS algorithm for earthquake prediction. For this purpose, this paper used precipitation and temperature acquired from National Weather Service and data of underground water level from Rural Groundwater Observation Network of Korea Rural Community Corporation which is installed in Miryang city, Gyeongsangnam-do. We measure the prediction accuracy using RMSE and MAPE calculation methods. As a result of the prediction, the periodic pattern was predicted by natural factors, but the change value of ground water level was changed by other variables such as artificial factors that was not detected. To solve this problem, it is necessary to digitize the ground water level by numerically quantifying artificial variables, and to measure the precipitation and pressure according to the exact location of the observation ball measuring the ground water level.

Effects of the ground water level on the stability of an underpass structure considering the degree of surface imperviousness (지표면 유출 특성을 고려한 지하수위 변화가 지하차도 구조물 안정성에 미치는 영향)

  • Jo, Seon-Ah;Hong, Eun-Soo;Cho, Gye-Chun;Jin, Kyu-Nam;Lee, Jung-Min;Han, Shin-In
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.95-107
    • /
    • 2016
  • Ground water is one of important parameters in the designs of underpass structures because urban areas are characterized by soil ground which is relatively permeable than rock ground and a high level of ground water due to low elevation. Therefore, it is important properly to predict variations of the ground water when they can affect underpass structures. In this study, a series of numerical analyses are performed to predict the variations of ground water levels considering the degree of surface imperviousness and LID(Low Impact Development) application. In turn the stability of underground structure is assessed using predicted ground water level. The results show that an increase in the impervious surface area decreases the ground water level. The application of permeable pavement as a LID facility increases the ground water level, improving the infiltration capacity of rainfall into the ground. Seasonal variations of the ground water level are also verified in numerical simulation. The results of this study suggest that reasonable designs of underpass structures can be obtained with the suitable prediction and application of the ground water level considering the surface characteristics.

Study on Measurement of Flood Risk and Forecasting Model (홍수 위험도 척도 및 예측모형 연구)

  • Kwon, S.H.;Oh, H.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.1
    • /
    • pp.118-123
    • /
    • 2015
  • There have been various studies on measurements of flood risk and forecasting models. For river and dam region, PDF and FVI has been proposed for measurement of flood risk and regression models have been applied for forecasting model. For Bo region unlikely river or dam region, flood risk would unexpectedly increase due to outgoing water to keep water amount under the designated risk level even the drain system could hardly manage the water amount. GFI and general linear model was proposed for flood risk measurement and forecasting model. In this paper, FVI with the consideration of duration on GFI was proposed for flood risk measurement at Bo region. General linear model was applied to the empirical data from Bo region of Nadong river to derive the forecasting model of FVI at three different values of Base High Level, 2m, 2.5m and 3m. The significant predictor variables on the target variable, FVI were as follows: ground water level based on sea level with negative effect, difference between ground altitude of ground water and river level with negative effect, and difference between ground water level and river level after Bo water being filled with positive sign for quantitative variables. And for qualitative variable, effective soil depth and ground soil type were significant for FVI.

Development of Automatic Event Detection Algorithm for Groundwater Level Rise (지하수위 상승 자동 이벤트 감지 알고리즘 개발)

  • Park, Jeong-Ann;Kim, Song-Bae;Kim, Min-Sun;Kwon, Ku-Hung;Choi, Nag-Choul
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.954-962
    • /
    • 2010
  • The objective of this study was to develop automatic event detection algorithm for groundwater level rise. The groundwater level data and rainfall data in July and August at 37 locations nationwide were analyzed to develop the algorithm for groundwater level rise due to rainfall. In addition, the algorithm for groundwater level rise by ice melting and ground freezing was developed through the analysis of groundwater level data in January. The algorithm for groundwater level rise by rainfall was composed of three parts, including correlation between previous rainfall and groundwater level, simple linear regression analysis between previous rainfall and groundwater level, and diagnosis of groundwater level rise due to new rainfall. About 49% of the analyzed data was successfully simulated for groundwater level rise by rainfall. The algorithm for groundwater level rise due to ice melting and ground freezing included graphic analysis for groundwater level versus time (day), simple linear regression analysis for groundwater level versus time, and diagnosis of groundwater level rise by new ice melting and ground freezing. Around 37% of the analyzed data was successfully simulated for groundwater level rise due to ice melting and ground freezing. The algorithms from this study would help develop strategies for sustainable development and conservation of groundwater resources.

Prediction of Industrial Noise Propagation Subjected to Ground Effect (지표면의 반사특성을 고려한 환경소음 예측)

  • 한상보
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.329-335
    • /
    • 2001
  • The analytical model of the ground wave can be used for the prediction of the noise level from a source above a plain and homogeneous ground surface with no obstacles nearby. Sound propagation along the surface of the ground can be affected by the roughness of the ground surface and the direction of the wind. The effects of the ground surface and the wind can be formulated in terms of the ground coefficient and the noise source parameter. Upward and downward conditions can also be addressed by considering the direction of the wind. The ground coefficient and the noise source parameter are estimated using the measured noise levels of two points under particular environmental condition, and the noise levels of arbitrary points under the same environmental condition can be estimated. The proposed method can be utilized to estimate the noise level of specific noise environment and its validity was confirmed with the results of actual field measurement.

  • PDF

Development of Empirical Equations for Estimating the Train-Induced Ground Vibration (철도연변 지반 진동 Data Base 구축을 통한 지반진동예측 실험식)

  • 황선근;고태훈;엄기영;오상덕
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1022-1027
    • /
    • 2001
  • In this study, the train-induced vibration was measured at many locations at/around the actual service lines and the data base was constructed using the measurement results. The characteristics of train induced ground vibration was categorized and the empirical ground vibration estimating equations were developed. On the ground area (level grounds, embankments, cut sections), the vibration estimating equations were developed in terms of ground vibration level which was related with the distance from the source. Especially for the cut section areas, the vibration levels were expressed with the vibration receiving point expressed by the ratio of vertical distance to horizontal distance(V/H) from the source. As a result, when V/H is 0.96, the vibration estimating equation gives a minimum vibration level.

  • PDF