• Title/Summary/Keyword: Ground Altitude

Search Result 343, Processing Time 0.027 seconds

Concept Design of High Altitude Simulation Test Facility (고공환경모사 시험설비 구축을 위한 개념설계)

  • Kim, Sang-Heon;Kim, Yong-Wook;Lee, Jung-Ho;Yu, Byung-Il;Cho, Sang-Yeon;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.75-81
    • /
    • 2006
  • The propulsion system of KSLV-I second stage is engine with high expansion ratio and its starting altitude is high. To verify the performance of engine before the launch in the ground, high altitude test facility to simulate its operating condition is necessary. This material is about the concept design of high altitude simulation test facility for second stage engine. And it will be the basis for the construction of test facility and the test of engine.

  • PDF

Starting Characteristics of Supersonic Exhaust Diffuser for Altitude Simulation Testing (고공환경 모사를 위한 초음속 디퓨저의 시동 특성 분석)

  • Kim, Yong-Wook;Lee, Jung-Ho;Kim, Sang-Heon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.117-121
    • /
    • 2012
  • Upper stage propulsion system designed for operation in the upper atmosphere should be tested under nozzle full flow conditions to verify its performance on the ground. KARI has carried out high altitude simulation test of KSLV-I kick motor using cylindrical supersonic exhaust diffuser. Also cold and hot flow test for the sub-scaled diffuser have been conducted to verify the design of real scale diffuser and to study its operating characteristics. This paper deals with the results obtained from these high altitude simulation tests.

Study of High Altitude Operation for Air Swirl Injector in Tangential Swirl Combustor (Tangential Swirl 연소기에 적용된 스월인젝터의 고고도 운전성능 연구)

  • Park, Hee-Ho;Ryu, Se-Hyun;Koo, Hyun-Cheol;Lee, Seong-Jun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.825-828
    • /
    • 2010
  • APU for aircraft is operated under severe condition as high altitude and low temperature, and demand high reliability in flight. This study is to be verified of the ignition and the combustion stability of APU under the harsh conditions. The basic data obtained in combustion rig test were directly applied to the altitude test with a engine. That start logic was obtained in ground development test. The results of altitude test show that air swirl injector has good operation and ignition performance at 20kft, hot/cold($-40^{\circ}C$) day.

  • PDF

An Implementation of Formation Flight Control System Using Two Drones (두 대의 드론을 이용한 편대 비행 제어 시스템 구현)

  • Kim, Dong-Jin;Park, Young-Seak
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.6
    • /
    • pp.343-351
    • /
    • 2016
  • In this study, we implemented a formation flight control system using two drones. Ground control system communicates with drones by MAVLink protocol, does keep watch on drone's status and sends simultaneously formation flight instructions to drones in real time. Two drones have been able to fly by a formation flight algorithm without crashing while maintaining the same speed, and a constant distance and altitude.

Environment of Optimal Location of the Dwelling in Unseo-dong Relics Group, Yeongjong-do, Incheon in the Neolithic Age - In Terms of Geographical and Geomorphological Characteristics - (인천 영종도 운서동유적그룹의 신석기시대 주거지 최적 입지환경 - 지리 및 지형학적 관점에서 -)

  • Park, Ji Hoon;Lee, Ae Jin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.3
    • /
    • pp.15-25
    • /
    • 2013
  • The purpose of this study is to identify the environment of optimal location of the dwelling (hereafter referred as dwelling site) in the Neolithic Age found in Unseo-dong relics group, Yeongjong-do, Incheon from the geographical and geomorphological perspectives. For this purpose, micro-landform, altitude, gradient, distance from the river of water available for use and the difference between the highest altitude and lowest altitude of river bed of water available for use based on change of dwelling site over periods were analyzed targeting ground surface of hills where individual dwelling sites (a total of 68 sites) discovered in investigation area so far. As a result, it was shown that the Upper sideslope were selected as the primary dwelling location standard in investigation area where the Neolithic people lived upon selecting the dwelling site (or settlement). In addition, the ground surface of dwelling site had the altitude of 21-31m and slope of $5-10^{\circ}$ (gentle slope) as the secondary and it had distance of 514-549m from the river of water available for use and difference of 11-23m between the highest altitude and lowest altitude of river bed of water available for use. Thus, it was shown that the space to get water relatively easy from two places at the same time was the secondary dwelling location standard.

CFD Analysis for Ground Effect of Tilt-Rotor UAV (틸트로터 무인기의 지면 효과 분석을 위한 전산해석)

  • Kim, Cheol-Wan
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.14-18
    • /
    • 2007
  • The ground effect on tilt-rotor UAV is analyzed by simulating the hovering UAV for various altitudes. Ground effect increases pressure beneath the UAV body and generates additional lifting force. The ground effect diminishes at altitude 3m and hovering UAV generates constant lifting force above 3m.

  • PDF

The Study on Integration of Gravities Anomaly in South Korea and Its Vicinities by Using Spherical Cap Harmonic Analysis (구면캡 조화분석을 이용한 남한 및 그 주변지역의 중력이상 통합에 관한 연구)

  • Hwang, Jong-Sun;Kim, Hyung-Rae;Kim, Chang-Hwan;You, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.41 no.2
    • /
    • pp.211-217
    • /
    • 2008
  • The gravity anomalies that observed by ground and shipborne survey and calculated from GRACE satellite are combined by using spherical cap harmonic analysis (SCHA). In this study, ground gravity data from Korea Institute of Geoscience and Mineral Resource(KIGAM) and shipborne gravity data from National Ocean Research Institute(NORI) and Korea Ocean Research and Development institute(KORDI) were used. L-2 level GRACE Gravity Model (GGM02C) was also used for satellite gravity anomaly. The ground and shipborne surveyed data were combined and gridded using Krigging method with 0.05 degree interval and GRACE data were also gridded using the same method with 0.05 degree to harmonize with the resolution of SCHA that has coefficient up to 80. Generalized Minimal Residual(GMRES) inversion method was implemented for calculating the coefficients of SCHA using the gridded ground and satellite gravity anomalies that had 0 km and 50 km altitude, respectively. The results of inversion method showed good correlation of 0.950 and 0.995 with original ground and satellite data. The gravity anomaly using SCHA satisfies Laplace's equation, therefore, using these SCHA coefficients, gravity anomaly can be calculated at any altitude. In this study, gravity anomaly was calculated from 10 km to 60 km altitude and each altitude, very stable results were shown. The ground and shipborne gravity data that have higher resolution and satellite data in long wavelength are harmonized well with SCHA coefficients and successfully applied in South Korea area. If more continuous survey and muti-altitude surveyed data like airborne data available, more precise gravity anomaly can be acquired using SCHA method.

Ground Risk Model Development for Low Altitude UAV Traffic Management (저고도 무인기 교통관리를 위한 지상 충돌 위험 모델 개발)

  • Kim, Youn-sil
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.471-478
    • /
    • 2020
  • In this paper, we develop the ground risk model of unmanned aerial vehicle (UAV) operation to quantify the ground risk when the UAV falls to the ground during the intended operation in case of UAV failure. The ground risk is computed by using the UAV failure probability, the probability of impact a person when UAV falls to the ground, the probability of fatality when UAV strikes the person. We mathematically derive each probability to evaluate the ground risk of UAV operation. Also, the population density map, building to land ratio map, car traffic database is used to estimate the number of people exposed to collision with UAV. Finally, we assumed the operations of a UAV with two paths in Daejeon city and evaluate the ground risk of each UAV operations.

Development of Low Altitude Terrain Following System based on TERain PROfile Matching (TERPROM 기반의 저고도 지형추적시스템 개발)

  • Kim, Chong-sup;Cho, In-je;Lee, Dong-Kyu;Kang, Im-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.888-897
    • /
    • 2015
  • A flight capability to take a terrain following flight near the ground is required to reduce the probability that a fighter aircraft can be detected by foe's radar fence in the battlefield. The success rate for mission flight has increased by adopting TFS (Terrain Following System) to enable the modern advanced fighter to fly safely near the ground at the low altitude. This system has applied to the state-of-the-art fighter and bomber, such as B-1, F-111, F-16 E/F and F-15, since the research begins from 1960's. In this paper, the terrain following system and GCAS (Ground Collision Avoidance System) was developed, based on a digital database with UTAS's TERPRROM (TERrain PROfile Matching) equipment. This system calculates the relative location of the aircraft in the terrain database by using the aircraft status information provided by the radar altimeter and the INS (Inertial Navigation System), based on the digital terrain database loaded previously in the DTC (Data Transfer Cartridge), and figures out terrain features around. And, the system is a manual terrain following system which makes a steering command cue refer to flight path marker, on the HUD (Head Up Display), for vertical acceleration essential for terrain following flight and enables a pilot to follow it. The cue is based on the recognized terrain features and TCH (Target Clearance Height) set by a pilot in advance. The developed terrain following system was verified in the real-time pilot evaluation in FA-50 HQS (Handling Quality Simulator) environment.

The Use of Unmanned Aerial Vehicle for Monitoring Individuals of Ardeidae Species in Breeding Habitat: A Case study on Natural Monument in Sinjeop-ri, Yeoju, South Korea (백로류 집단번식지의 개체수 모니터링을 위한 무인항공기 활용연구 - 천연기념물 209호 여주 신접리 백로와 왜가리 번식지를 대상으로 -)

  • Park, Hyun-Chul;Kil, Sung-Ho;Seo, Ok-Ha
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.1
    • /
    • pp.73-84
    • /
    • 2019
  • In this research, it is a basic study to investigate the population of birds using UAVs. The research area is Ardeidae species(ASP) habitat and has long-term monitoring. The purpose of the study is to compare the ASP populations which analyzed ground observational survey and UAVs imagery. We used DJI's Mavic pro and Phantom4 for this research. Before investigating the population of ASP, we measured the escape distance by the UAVs, and the escape distances of the two UAVs models were statistically significant. Such a result would be different in UAV size and rotor(rotary wing) noise. The population of ASP who analyzed the ground observation and UAVs imagery count differed greatly. In detail, the population(mean) on the ground observation was 174.9, and the UAVs was 247.1 ~ 249.9. As a result of analyzing the UAVs imagery, These results indicate that the lower the UAVs camera altitude, the higher the ASP population, and the lower the UAVs camera altitude, the higher the resolution of the images and the better the reading of the individual of ASP. And we confirmed analyzed images taken at various altitudes, the individuals of ASP was not statistically significant. This is because the resolution of the phantom was superior to that of mavic pro. Our research is fundamental compared to similar studies. However, long-term monitoring for ASP of South Korea's by ground observation is a barrier of the reliability of the monitoring result. We suggested how to use UAVs which can improve long-term monitoring for ASP habitat.