• Title/Summary/Keyword: Grooved

Search Result 377, Processing Time 0.026 seconds

Fabrication of Grooved Pattern for the Light Guide Plate of TFT-LCD with CO2 Laser (CO2 레이저 빔을 이용한 TFT-LCD 도광판의 패턴 제작에 관한 연구)

  • 김경동;백창일;송철기;안성훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.147-150
    • /
    • 2002
  • A light guide panel is an element of the LCD backlight module that is often used for the display of compact electronic devices. In this study, a laser marking system is proposed to fabricate light guide panel, which can be replaced of other manufacturing methods such as silk printing, stamping, and v-cutting methods. The objectives of this research are the establishment of laser marking system, evaluation of laser marking parameters, understanding marking process, application to PMMA, reliability test and quality inspection. A 50W $CO_2$ laser (CW) was used to perform different experiments in which, the influence of some processing parameters (average power, scanning speed) on the geometry and quality of groove pattern was studied. The width of the etched grooves increases with increasing a laser power and decreasing a scan speed. In order to analyze surface characteristics and optical properties (luminance, uniformity), SEM photography and BM7 (luminance measuring system) were used. As a result, the optimal conditions of the process parameters were determined.

  • PDF

Coupled Analysis of the Fluid Dynamic Bearings with the Recirculation Channel by Solving the Reynolds and Hagen-Poiseuille Equations (Reynolds 방정식과 Hagen-Poiseuille 방정식의 연성해석을 통한 재순환홀을 갖는 유체동압베어링의 해석)

  • Kang, Chiho;Jang, Gunhee;Jung, Yeonha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.760-767
    • /
    • 2014
  • This paper proposes a method to calculate pressure and flow of the fluid dynamic bearings (FDBs) with a recirculation channel (RC) by solving the Reynolds and the Hagen-Poiseuille equations at the same time. The Hagen-Poiseuille equation is one-dimensional equation which describes the flow in a circular pipe such as the RC. This research developed a finite element program to solve the Reynolds and the Hagen-Poiseuille equation together. The proposed method was applied to calculate the pressure and flow of the FDBs which are composed of grooved or plain journal and thrust bearings, and RC. To verify the proposed method, it also developed a finite volume model of the FDBs, and pressure and flow were calculated by the commercial CFD solver. They agree well with the pressure and flow calculated by the proposed method. Finally, this research investigated the characteristics of the FDBs due to the radius change of the RC.

  • PDF

Cytologic Feature of Papillary Carcinoma of the Thyroid (세침흡인 검사로 진단된 갑상선 유두상 암종의 세포학적 소견)

  • Park, Jeong-Hee;Chang, Hee-Jin;Kang, Kyung-Ha;Sohn, Jin-Hee;Suh, Jung-Il
    • The Korean Journal of Cytopathology
    • /
    • v.2 no.2
    • /
    • pp.111-118
    • /
    • 1991
  • Fine needle aspiration biopsy cytology (FNA) is an important diagnostic tool in the management of thyroid nodule. Especially, papillary carcinoma of the thyroid has distinct morphologic features that allow a definite cytologic diagnosis with high degree of accuracy. We examined the characteristic cytologic features of 57 cases of papillary carcinoma of the thyroid, and their frequency and diagnostic significance were evaluated. The results obtained are summerized as follows; 1. In pattern of cellular arrangement, papillary structure with or without stroma is predominant feature (96%). 2. In individual cell morphology, grooved nuclei (95%), intranuclear cytoplasmic invagination (89%) and nuclear lobulation (74%) are most frequent and important cytologic findings. 3. Chromatin pattern is usually fine. Coarse chromatin is infrequent finding (37%). Nucleoli are inconspicuous. Cytoplasm us plump and distinctly eosinophilic. 4. Psammoma bodies are identified only in 4 cases (7%), but they are considered as helpful diagnostic features. 5. There are other associated findings including multinucleated giant cells (51%), macrophages (37%) and cystic degeneration (16%).

  • PDF

Study on the Optimization of Absorption Performance of the Vertical Tube Absorber with Falling Film (수직 액막형 흡수기의 성능 최적화에 관한 연구)

  • Kim, Jung-Kuk;Cho, Keum-Nam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.830-838
    • /
    • 2005
  • The present study investigated the optimization of the absorption performance of the vertical absorber tube with falling film by considering heat and mass transfer simultaneously. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of coolant flow rate and the flow pattern by geometric parameters has been observed for the total heat and mass transfer rates through both numerical and experimental studies. Based on both predicted values, the optimal coolant flow rate was predicted as 1.98 L/min. The maximum absorption rate of the spring inserted tube was increased by the maximum of $20.0\%$ than those for uniform film of bare tube. Average Sherwood numbers and Nusselt numbers were increased as Reynolds numbers increased under the dynamic and geometric conditions showing the maximum absorption performance.

A Study on the Performance of Condensation Heat Transfer for Various Working Fluid of Two-Phase Closed Thermosyphons with Various Helical Grooves (나선 그루브형 열사이폰의 작동유체의 변화에 대한 응축열전달 성능에 관한 연구)

  • Han, Kyu-Il;Cho, Dong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.116-122
    • /
    • 2005
  • This study concerns the performance of condensing heat transfer in two-phase closed thermosyphons with various helical grooves. Distilled water, methanol, ethanol have been used as the working fluid. In the present work, a copper tube of the length of 1200mm and 14.28mm of inside diameter is used as the container of the thermosyphon. Each of the evaporator and the condenser section has a length of 550mm, while the remaining part of the thermosyphon tube is adiabatic section. A experimental study was carried out for analyzing the performances of having 50, 60, 70, 80, 90 helical grooves. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphons is also tested for the comparison. The type of working fluid and the numbers of grooves of the thermosyphons with various helical grooves have been used as the experimental parameters. The experimental results have been assessed and compared with existing theories. The results show that the type of working fluids are very important factors for the operation of thermosyphons. And the maximum enhancement (i.e. the ratio of the heat transfer coefficients the helical thermosyphons to plain thermosyphons) is $1.5{\sim}2$ for condensation.

Theoretical and Experimental Studies on Boiling Heat Transfer for the Thermosyphons with Various Helical Grooves

  • Han Kyuil;Cho Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1662-1669
    • /
    • 2005
  • Boiling heat transfer characteristics of a two-phase closed thermosyphons with various helical grooves are studied experimentally and a mathematical correlation is developed to predict the performance of such thermosyphons. The study focuses on the boiling heat transfer characteristics of two-phase closed thermosyphons with copper tubes having 50, 60, 70, 80, 90 internal helical grooves. A two-phase closed thermosyphon with plain copper tube having the same inner and outer diameter as those of grooved tubes is also tested for comparison. Water, methanol and ethanol are used as working fluid. The effects of the number of grooves, various working fluids, operating temperature and heat flux are investigated experimentally. From these experimental results, a mathematical model is developed. In the present model, boiling of liquid pool in the evaporator is considered for the heat transfer mechanism of the thermosyphons. And also the effects of the number of grooves, the various working fluids, the operating temperature and the heat flux are brought into consideration. A good agreement between the boiling heat transfer coefficient of the thermosyphon estimated from experimental results and the predictions from the present mathematical correlation is obtained. The experimental results show that the number of grooves, the amount of the working fluid and the various working fluids are very important factors for the operation of thermosyphons. Also, the thermosyphons with internal helical grooves can be used to achieve some inexpensive and compact heat exchangers in low temperature.

An Experimental Study on Evaporative Heat Transfer Characteristics in Micro-Fin Tubes Before and After Expansion Process (마이크로핀관의 확관 전후 증발열전달 특성에 관한 실험적 연구)

  • 전상희;황윤욱;윤석호;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.932-940
    • /
    • 2000
  • An experimental study on evaporative heat transfer characteristics in micro-fin tubes before and after expansion process has been performed with R-22. Single-grooved micro-fin tubes with outer diameter of 9.52 mm were used as test sections, and it was uniformly heated by applying direct current to the test tubes. Experiments were conducted at mass flow rates of 20 and 30 kg/hr. For each mass flow rate condition, evaporation temperature was set at 5 and $15^{\circ}C$and heat flux was changed from 6 to 11 kW/$m^2$ The evaporative heat transfer coefficient of micro-fin tubes after expansion is decreased because of the crush of fins and enlargement of inner diameter compared to that before expansion. Convective boiling effect decreased remarkably at higher quality range in the micro-fin tube after expansion, and the difference of the heat transfer coefficient in micro-fin tubes before and after expansion was greater for higher quality region. The evaporative heat transfer coefficient of the micro-fin tube after expansion was 19.9% smaller on the average than that before expansion.

  • PDF

A Comparison between the Internal Saturation Temperature of Working Fluid and the Surface Temperature of Adiabatic Zone of Two-Phase Closed Thermosyphons with Various Helical Grooves (평관형 및 나선 그루브형 열사이폰 내부 작동유체의 포화온도와 단열부의 표면온도에 관한 연구)

  • Han, K.I.;Cho, D.H.;Park, J.U.;Lee, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1243-1249
    • /
    • 2004
  • This study is focused on the comparison between the internal saturation temperature of the working fluid and the surface temperature of adiabatic zone of two-phase closed thermosyphons with various helical grooves. Distilled water, methanol and ethanol have been used as the working fluid. In the present work, a copper tube of the length of 1200mm and 14.28mm of inside diameter is used as the container of the thermosyphon. Each of the evaporator and the condenser section has a length of 550mm, while the remaining part of the thermosyphon tube is adiabatic section. A experimental study was carried out for analyzing the performances of having 50, 60, 70, 80, 90 helical grooves. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphons is also tested for the comparison. The results show that the numbers of grooves and the type of working fluids are very important factors for the operation of thermosyphons. A good agreement between the internal saturation temperature of working fluid and the surface temperature of adiabatic zone of two-phase closed thermosyphons with various helical grooves is obtained.

  • PDF

Experimental Method to Evaluate Stress Triaxiality near the Crack Tip;Applicability to Various Specimen Configurations (균열선단 응력삼축성의 측정방법;여러 형상 시험편에의 적용성 검토)

  • Kim, Dong-Hak;Kim, Do-Hyung;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.60-65
    • /
    • 2004
  • Kim et al. described and compared other methods of measuring stress triaxiality using the displacements near the side necking, proved the validities of these models and explored the effect of location where the displacements are measured using three-dimensional finite element analysis for a standard CT specimen with 20% side-grooves. In this paper, the applicability of these models to various specimen and materials are examined in detail. To consider the effects of side groove, thickness of specimen, crack length, specimen geometry and strain hardening exponents, three-dimensional finite element simulation has been performed for various specimen geometries. For a case without a side groove, in the whole the difference between the stress triaxilaity analytically evaluated and directly determined is similar. For a case with a 20% side groove the stress triaxiality is measured at the area where ${\theta}$ is smaller than $60^{\circ}$, which excludes a side grooved area.

  • PDF

Effect of Wall Groove Characteristics on Yield Stress Measurement of Magnetorheological Fluid

  • Tian, Zuzhi;Guo, Chuwen;Chen, Fei;Wu, Xiangfan
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.281-285
    • /
    • 2017
  • To suppress the wall slip effect and improve the yield stress measurement precision of magnetorheological fluid, measurement disks with different grooves are first manufactured. Then, the influence of groove characteristics on the yield stress of magnetorheological fluid is investigated by the method of experiments. Finally, the optimization wall grooves of measurement disks are obtained, and the yield stress of a self-prepared magnetorheological fluid is measured. Results indicate that the groove type and groove width have a slight influence on the shear yield stress, whereas the measured yield stress increases with enhanced groove density, and the optimized groove depth is 0.3 mm. The measured shear yield stress of self-prepared MR fluid can be improved by 18 % according to the optimized grooved disks, and the maximum yield stress can reach up to 65 kPa as the magnetic flux density is 0.5 T.