DOI QR코드

DOI QR Code

Effect of Wall Groove Characteristics on Yield Stress Measurement of Magnetorheological Fluid

  • Tian, Zuzhi (School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Guo, Chuwen (School of Electrical and Power Engineering, China University of Mining and Technology) ;
  • Chen, Fei (School of Mechanical and Electrical Engineering, China University of Mining and Technology) ;
  • Wu, Xiangfan (School of Mechanical and Electrical Engineering, China University of Mining and Technology)
  • Received : 2017.01.18
  • Accepted : 2017.03.24
  • Published : 2017.06.30

Abstract

To suppress the wall slip effect and improve the yield stress measurement precision of magnetorheological fluid, measurement disks with different grooves are first manufactured. Then, the influence of groove characteristics on the yield stress of magnetorheological fluid is investigated by the method of experiments. Finally, the optimization wall grooves of measurement disks are obtained, and the yield stress of a self-prepared magnetorheological fluid is measured. Results indicate that the groove type and groove width have a slight influence on the shear yield stress, whereas the measured yield stress increases with enhanced groove density, and the optimized groove depth is 0.3 mm. The measured shear yield stress of self-prepared MR fluid can be improved by 18 % according to the optimized grooved disks, and the maximum yield stress can reach up to 65 kPa as the magnetic flux density is 0.5 T.

Keywords

References

  1. S. R Agustin, F. Donado, and R. E. Rubio, J. Magn. Magn. Mater. 335, 149 (2013). https://doi.org/10.1016/j.jmmm.2013.02.017
  2. Y. H. Huang, Y. H. Jiang, X. B. Yang, and R. Z. Xu, J. Magn. 20, 317 (2015). https://doi.org/10.4283/JMAG.2015.20.3.317
  3. H. J. Kim, G. C. Kim, G. S. Lee, T. M. Hong, and H. J. Choi, J. Nanosci. Nanotechnol. 13, 6005 (2013). https://doi.org/10.1166/jnn.2013.7655
  4. Y. D. Liu, J. Lee, S. B. Choi, and H. J. Choi, Smart Mater. Struct. 22, 065006 (2013). https://doi.org/10.1088/0964-1726/22/6/065006
  5. O. Erol, B. Gonenc, D. Senkal, S. Alkan, and H. Gurocak, J. Intell. Mater. Syst. Struct. 23, 427 (2012). https://doi.org/10.1177/1045389X11435432
  6. X. F. Wu, X. M. Xiao, Z. Z. Tian, F. Chen, and J. Wang, J. Magn. 21, 244 (2016). https://doi.org/10.4283/JMAG.2016.21.2.244
  7. A. K. Singh, S. Jha, and P. M. Pandey, Mater. Manuf. Processes 27, 389 (2012). https://doi.org/10.1080/10426914.2011.551911
  8. F. Chen, Z. Z. Tian, and X. F. Wu, Mater. Manuf. Processes 30, 210 (2015). https://doi.org/10.1080/10426914.2014.892967
  9. K. Wollny, J. Lauger, and S. Huck, Appl. Rheol. 1, 25 (2002).
  10. S. Genc and P. P. Phule, Smart Mater. Struct. 11, 140 (2002). https://doi.org/10.1088/0964-1726/11/1/316
  11. X. Wang, Rheol. Acta 45, 899 (2006). https://doi.org/10.1007/s00397-005-0058-y
  12. J. H. Park, B. D. Chin, and O. O. Park, J. Colloid Interface Sci. 240, 349 (2001). https://doi.org/10.1006/jcis.2001.7622
  13. E. Lemaire and G. Bossis, J. Phys. D: Appl. Phys. 24, 1473 (1991). https://doi.org/10.1088/0022-3727/24/8/037
  14. G. Bossis and E. Lemaire, J. Rheol. 35, 1345 (1991). https://doi.org/10.1122/1.550234
  15. S. Gorodkin and N. Zhuravski, Int. J. Mod. Phys. B 16, 2745 (2002). https://doi.org/10.1142/S0217979202012931
  16. M. L. Hans, G. Claus, and K. Christoffer, Rheol. Acta 50, 141 (2011). https://doi.org/10.1007/s00397-011-0531-8