• Title/Summary/Keyword: Grid-side Inverter

Search Result 68, Processing Time 0.023 seconds

Current Harmonics Rejection and Improvement of Inverter-Side Current Control for the LCL Filters in Grid-Connected Applications

  • Xu, Jinming;Xie, Shaojun;Zhang, Binfeng
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1672-1682
    • /
    • 2017
  • For grid-connected LCL-filtered inverters, the inverter-side current can be used as the control object with one current sensor for both LCL resonance damping and over-current protection, while the grid-voltage feedforward or harmonic resonant compensator is used for suppressing low-order grid current harmonics. However, it was found that the grid current harmonics were high and often beyond the standard limitations with this control. The limitations of the inverter-side current control in suppressing low-order grid current harmonics are analyzed through inverter output impedance modeling. No matter which compensator is used, the maximum magnitudes of the inverter output impedance at lower frequencies are closely related to the LCL parameters and are decreased by increasing the control delay. Then, to improve the grid current quality without complicating the control or design, this study proposes designing the filter capacitance considering the current harmonic constraint and using a PWM mode with a short control delay. Test results have confirmed the limitation and verified the performance of the improved approaches.

Robust Control of a Grid Connected Three-Phase Two-Level Photovoltaic Inverter (3상 2레벨 계통연계형 태양광 인버터의 강인제어)

  • Ahn, Kyung-Pil;Lee, YoungIl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.538-548
    • /
    • 2014
  • This study provides a robust control of a grid-connected three-phase two-level photo voltaic inverter. The introduced control method uses the cascade control strategy to regulate AC-side current and DC-link voltage. A robust controller with integration action is used for the inner-loop AC-side current control, which maximizes the convergence rate using a linear matrix inequality-based optimization design method and eliminates the offset error. The robust controller design method considers the parameter uncertainty set to accommodate parameter mismatch and un-modeled components in the inverter model. An outer-loop proportional-integral controller is used to regulate DC-link voltage with linearization of DC/AC relation. The proposed control strategy is applied to a grid-connected 100 kW photo voltaic inverter.

Stability Analysis of Grid-Connected Inverters with an LCL Filter Considering Grid Impedance

  • Li, Xiao-Qiang;Wu, Xiao-Jie;Geng, Yi-Wen;Zhang, Qi
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.896-908
    • /
    • 2013
  • Under high grid impedance conditions, it is difficult to guarantee the stability of grid-connected inverters with an LCL filter designed based on ideal grid conditions. In this paper, the theoretical basis for output impedance calculation is introduced. Based on the small-signal model, the d-d channel closed-loop output impedance models adopting the converter-side current control method and the grid-side current control method are derived, respectively. Specifically, this paper shows how to simplify the stability analysis which is usually complemented based on the generalized Nyquist stability criterion (GNC). The stability of each current-controlled grid-connected system is analyzed via the proposed simplified method. Moreover, the influence of the LCL parameters on the stability margin of grid-connected inverter controlled with converter-side current is studied. It is shown that the stability of grid-connected systems is fully determined by the d-d channel output admittance of the grid-connected inverter and the inductive component of the grid impedance. Experimental results validate the proposed theoretical stability analysis.

Research on the Direct-drive Wind Power Grid-connected System Based on the Back-to-back Double Closed-loop Full Control Strategy (연속 이중 폐쇄 루프 완전 제어 전략 기반 직접 구동 풍력 전력망 연결 시스템 연구)

  • Xian-Long Su;Han-Kil Kim;Kai Han;Hoe-Kyung Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.661-668
    • /
    • 2024
  • Based on the topology of the direct-drive permanent magnet synchronous wind power grid-connected system based on the power electronics full-power converter, the wind turbine model and the grid-side inverter model were studied, and the machine-side rectifier control based on current and speed double closed loops was designed. strategy, as well as a grid-side inverter control strategy based on current and voltage double closed loops, implementing a two-level back-to-back double closed-loop full control strategy. A system simulation model was built using Matlab/Simulink, and the operation of the unit was simulated when the wind speed changed step by step. The grid-connected current with the same phase and good sinusoidal nature of the grid voltage was output. The grid-connected system ran stably and efficiently. The simulation results The validity and rationality of the model, as well as the correctness and feasibility of the control strategy were verified.

Sensorless MPPT Control using a Boost Converter and a Grid Side Inverter in Wind Power Generation Systems (Boost 컨버터와 계통연계 인버터를 이용한 풍력발전의 센서리스 MPPT 제어)

  • Kim, Do-Yoon;Lee, Jun-Min;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1372-1377
    • /
    • 2011
  • This paper proposes the control method of MPPT(maximum power point tracking) for the wind energy generation system using the duty ratio control of boost type DC-DC converter. For a lower cost and a higher reliability, the wind and the generator velocity sensors are removed. MPPT control is implemented by changing the duty ratio of the boost converter. Chain rule is applied by using each function. The grid side inverter is controlled to regulate unity power factor. The proposed control method was analyzed mathematically and verified by the computer simulation using PSIM.

Grid Voltage Estimation Scheme without Phase Delay in Voltage-sensorless Control of a Grid-connected Inverter (전압센서를 사용하지 않는 계통연계 인버터의 제어 및 위상지연을 개선한 계통전압 추정 기법)

  • Kim, Hyun-Sou;Kim, Kyeong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.89-93
    • /
    • 2017
  • This study proposes a grid voltage estimation scheme without a phase delay in the voltage-sensorless control of a grid-connected inverter to enhance its economic feasibility, such as manufacturing cost and system complexity. The proposed scheme estimates grid voltages using a disturbance observer (DOB)-based current controller to control the grid-connected inverter without grid-side voltage sensors. The proposed voltage-sensorless control scheme can be applied successfully to grid-connected inverters, which should be operated with synchronization to the grid, considering the phase angle of the grid can be effectively detected through estimating the grid voltages by DOB. However, a problem associated with the phase delay in estimated grid voltages remains because the DOB has dynamic behavior similar to low-pass filter. Hence, the estimated grid voltages are compensated by a phase lead compensator to overcome the limitation. The effectiveness of the proposed control and estimation schemes is proven through simulations and experiments using a 2 kVA prototype inverter.

Maximum Power Point Tracking Control for a Grid-Tie Photovoltaic Inverter (계통 연계형 태양광 인버터에서 최대 출력 점 추적 제어)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.72-79
    • /
    • 2009
  • Solar energy is desirable due to its renewable and pollution-free properties. In order to utilize the present utility grid infrastructure for power transmission and distribution, a do-dc boost converter and grid connected dc-to-ac inverters are needed for solar power generation. The dc-dc boost converter allows the PV system to operate at high do-link voltage. The single-phase inverter provides the necessary voltage and frequency for interconnection to the grid. In this paper, first, current loop transfer function of a single-phase grid-tie inverter has been systematically derived Second the MPPT of conductance increment method at converter side is proposed to supply the maximum power to the inverter side. Simulation results are shown to access the performance of PV system and its behaviour at the interconnection point.

Design of an LCL-Filter for Space Vector PWM in a Grid-Connected System (3상 계통 연계 인버터의 SVPWM을 위한 LCL-필터 설계)

  • Seo, Seung Gyu;Cho, Yongsoo;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.538-541
    • /
    • 2016
  • This paper proposes an LCL-filter design for space vector pulse width modulation (SVM) in grid-connected three-phase inverter systems. Although there are a several studies in progress, the existing methods are erroneous because they do not focus on the other switching methods. This paper presents the design methodology for an LCL-filter that is optimized for SVM switching operations. The design procedure for the LCL-filter is presented step-by-step. The inverter-side inductor was determined by an analysis of the ripple components, mathematically. Based on the reactive power absorption ratio, the filter capacitor was determined. The grid-side inductor was determined by the ripple attenuation factor of the output current. Experimental results verify the validity of the design method for the LCL-filter.

Reduction of Grid Current Harmonic Distortion through a 6th Harmonic Control Method in Grid-Connected Three-Level NPC Inverters (계통연계형 3-레벨 NPC 인버터의 6차 고조파 제어 기법을 이용한 계통 전류 고조파 저감)

  • Sin, Jiook;Bak, Yeongsu;Park, Seong-Soo;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.778-785
    • /
    • 2017
  • This paper presents a control method for reducing the distortion of the grid current at a grid-connected three-level neutral point clamped (NPC) inverter. The grid current is distorted from the 5th and 7th harmonic components in the stationary frame current also the 6th harmonic component in the synchronous frame current. In this paper, the 6th harmonic component on synchronous frame is controlled by using all-pass filters (APFs) and proportional integral (PI) controllers for distortion of the grid side. When transformed the 6th harmonic component is controlled, the 5th and 7th harmonic components are reduced. The validity of the proposed control method is verified by simulation and experiment results using a 25kW three-level NPC inverter.

Design of LCL-filter for Grid-Connected Three-Phase Inverters Using a Discontinuous PWM Method (DPWM 방식을 적용한 3상 계통 연계 인버터의 LCL-필터 설계)

  • Lee, Jung-Rok;Seo, Seung Gyu;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.419-427
    • /
    • 2016
  • This paper proposes a design method of LCL-filter for a grid-connected three-phase inverter using a discontinuous PWM (DPWM) method. When using a DPWM method, many harmonic voltages are generated in the inverter output compared to a continuous PWM (CPWM) method. Therefore, an optimized grid-connected filter design is required for a DPWM method. The proposed design method provides generalized formula to design accurate LCL-filter without trial and error procedures. An inverter side inductance is designed by analyzing the current ripple injected to the grid. The Optimized parameters of LCL-filter can be designed by analyzing the total harmonic distortion (THD) and the ripple attenuation factor of the output current. The proposed LCL filter design method is demonstrated by simulation and experimental results.