• Title/Summary/Keyword: Grid-forming

Search Result 61, Processing Time 0.024 seconds

A Study on the Shear Forming Process of Grid for Lead-Acid Battery (무누액 배터리기판 격자의 전단공정 개발)

  • 이춘만;김대성;정종윤;조형찬
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.128-133
    • /
    • 2004
  • This study has been focused on the development of shear forming process of grid for lead-acid battery. The grid plays an important role in the flow of electricity because the grid is a skeleton of the pasted plate. Therefore, it must be of the highest quality to prevent plate failures and then, battery failure, and ensure the best battery performance possible. The finite element analysis of the shear forming process is carried out and the result is compared with the experimental data. The influence of the numerical parameters such as clearance, velocity of punch and critical damage value on the simulation results turns out to be very considerable.

  • PDF

Analytical study on High speed Shear forming Process of Lead-acid Battery Grids (연축전지 기판 격자의 고속 전단성형공정 해석적 연구)

  • Kim Dae-sung;Jung Jong-jun;Cho Hyung-chan;Lee Coon-man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.81-87
    • /
    • 2006
  • This study has been focused on the analysis of high speed shear forming process for lead-acid battery grids. The grid plays an important role of electrical charge. It is necessary to ensure the best battery's performance that the grid should have a best quality. The clearance between punch and die, the velocity of punch and the critical damage value are very important parameters for making a good grid form. The finite element analysis of the shear forming process is carried out by measuring and optimizing these three important parameters. The result of this study concludes that these parameters has a great influence on grid quality.

FE-Analysis of Hot Forming of Al Large Thick Plate for Spherical LNG Tank Considering Cooling Performance of Grid-Typed Die (격자형 금형의 냉각효과를 고려한 구형 LNG 탱크용 대형 알루미늄 후판의 열간성형해석)

  • Lee, Jung-Min;Lee, In-Kyu;Kim, Dae-Soon;Kwon, Il-Keun;Lee, Seon-Bong;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1190-1198
    • /
    • 2012
  • A hot forming of large thick Al plate using a grid-type hybrid die is a process to make a shell plate for the production of a spherical LNG tank. This process is characterized by using a grid-typed die with an additional air cooling system for reducing the cooling time of the heated plate after hot forming. The process consists of the plate's feeding, heating, forming and cooling in detail and each of them is continuously performed along the rail. This paper was designed to propose the analytical and experimental methods for determining the convection and interfacial heat transfer coefficients required in hot forming analysis of Al plate. These values in the analysis are to reproduce numerically the cooling performance of grid-typed die and cooling device. Interfacial heat transfer was obtained from the heat transfer experiments for different pressures and inverse analysis method. To verify the efficiency of the coefficient values obtained from above methods, FE analysis and experiment of the hot spherical-forming process were conducted for a small-scaled model. The convection coefficient was also calculated from flow analysis of air released by cooling device within grid-typed die using ANSYS-CFX.

Experimental and FE Analyses of Hot Curvature-Forming for Aluminum Thick Plate Using Grid-Typed Hybrid Die (격자형 하이브리드 금형에 의한 열간 알루미늄후판 곡면성형공정해석 및 실험)

  • Lee, I.K.;Lee, J.M.;Son, Y.K.;Lee, C.J.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.316-323
    • /
    • 2011
  • The hot curvature-forming of large aluminum thick plate using a grid-typed hybrid die is a process for the production of a spherical LNG tank. Many variables such as the initial die surface quality, grid size, grid thickness, size of blank plate and cooling line design, control the success of the process. In addition, the plate used in this process is generally larger than $10{\times}10m$ in size. Thus, it is very difficult to predict the surface characteristics of the plate during forming and to measure the different parameters due to the high cost of the experiments. In order to optimize the process design for the grid-type die, the development of an analytical method to predict the surface characteristics of the final product in hot curvature-forming is needed. This paper described the development of the method and procedures for FE simulations of the hot curvature-forming process, including hot forming, air flow, cooling, and thermal deformation analyses. An experiment for a small scale model of the process was conducted to check the validity of the numerical method. The results showed that the curvature of the plate in the analysis agrees well with that of the experiment within 0.037 and 0.016% tolerance margins for its side and corner, respectively.

Power Decoupling Control Method of Grid-Forming Converter: Review

  • Hyeong-Seok Lee;Yeong-Jun Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.221-229
    • /
    • 2023
  • Recently, Grid-forming(GFM) converter, which offers features such as virtual inertia, damping, black start capability, and islanded mode operation in power systems, has gained significant attention. However, in low-voltage microgrids(MG), it faces challenges due to the coupling phenomenon between active and reactive power caused by the low line impedance X/R ratio and a non-negligible power angle. This power coupling issue leads to stability and performance degradation, inaccurate power sharing, and control parameter design problems for GFM converters. Therefore, this paper serves as a review study on not only control methods associated with GFM converters but also power decoupling techniques. The aim is to introduce promising control methods and enhance accessibility to future research activities by providing a critical review of power decoupling methods. Consequently, by facilitating easy access for future researchers to the study of power decoupling methods, this work is expected to contribute to the expansion of distributed power generation.

Development of a Surface-Strain Measurement System Using the Image Processing Technique (화상처리법을 이용한 곡면변형률 측정 시스템의 개발)

  • Han, Sang-Jun;Kim, Yeong-Su;Kim, Hyeong-Jong;O, Su-Ik
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.575-585
    • /
    • 1998
  • An automated surface-strain measuring system using the image processing technique is developed in the present study which consists of the hardware to capture and to display digital images. and the software to calculate the 3-D informations of grid points from two views. New or improved algorithms for the mapping and establishing correspondence of grid points and elements the camera calibration and the subpixel measurement of grid points are implemented. As an application of the present system the surface-strains of deformed blanks in the limitting dome height test the square cup deep-drawing and punch stretching to obtain the forming limit diagram are measured. The results are com-pared with those obtained by conventional manual methods.

  • PDF

Two Dimensional Automatic Quadrilateral Mesh Generation for Metal Forming Analysis (소성 가공 공정 해석을 위한 2차원 사각 요소망 자동 생성)

  • Kim, Sang-Eun;Yang, Hyun-Ik
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.3
    • /
    • pp.197-206
    • /
    • 2009
  • In a finite element analysis of the metal forming processes having large plastic deformation, largely distorted elements are unstable and hence they influence upon the result toward negative way so that adaptive remeshing is required to avoid a failure in the numerical computation. Therefore automatic mesh generation and regeneration is very important to avoid a numerical failure in a finite element analysis. In case of generating quadrilateral mesh, the automation is more difficult than that of triangular mesh because of its geometric complexity. However its demand is very high due to the precision of analysis. Thus, in this study, an automatic quadrilateral mesh generation and regeneration method using grid-based approach is developed. The developed method contains decision of grid size to generate initial mesh inside a two dimensional domain, classification of boundary angles and inner boundary nodes to improve element qualities in case of concave domains, and boundary projection to construct the final mesh.

Deformation Characteristics in Sheet Metal Forming with Small Ball (소형 구를 이용한 박판 성형에서의 변형특성)

  • 심명섭;박종진
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.59-66
    • /
    • 2001
  • Recently, the technology of incremental forming for sheet metal components has drawn attention for small-batch productions. In the present investigation, a forming tool containing a freely-rotating ball was developed and applied to forming of various shapes with full annealed Al 1050 sheet. Deformation characteristics occurring during forming with this tool was examined through FEM analysis and grid measurement. It was found that deformation modes developed along a straight path and around a corner are close to those of plane-strain and equi-biaxial stretching, respectively, and that cracks occur mostly at corners for the same depth of tool. FEM analysis was successfully applied to this special type of forming process and provided comparable results to the measurements from experiment.

  • PDF

AUTOMATIC HEXAHEDRAL MESH GENERATION FOR FINITE ELEMENT SIMULATION OF METAL FORMING

  • Ryoo S. R.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.04a
    • /
    • pp.105-112
    • /
    • 2002
  • A new grid-based approach is presented for automatic generation of hexahedral meshes for simulation of plastic deformation in metal forming. In this approach, special enveloping schemes are applied, to eradicate the sources of the degenerate elements that may appear in a generated mesh. The schemes are described in detail, along with a complete procedure for mesh generation. The capability of the approach to deal with an arbitrary, 3-D process geometry is demonstrated through application to a selected forming problem.

  • PDF

A Study on Structural Simulation for Development of High Strength and Lightweight 48V MHEV Battery Housing (고강도 경량 48V MHEV 배터리 하우징 개발을 위한 구조시뮬레이션에 관한 연구)

  • Yong-Dae Kim;Jeong-Won Lee;Eui-Chul Jeong;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.48-55
    • /
    • 2023
  • In this study, on the structure simulation for manufacturing a high strength/light weight 48V battery housing for a mild hybrid vehicle was conducted. Compression analysis was performed in accordance with the international safety standards(ECE R100) for existing battery housings. The effect of plastic materials on compressive strength was analyzed. Three models of truss, honeycomb and grid rib for the battery housing were designed and the strength characteristics of the proposed models were analyzed through nonlinear buckling analysis. The effects of the previous existing rib, double-sided grid rib, double-sided honeycomb rib and double-sided grid rib with a subtractive draft for the upper cover on the compressive strength in each axial direction were examined. It was confirmed that the truss rib reinforcement of the battery housing was very effective compared to the existing model and it was also confirmed that the rib of the upper cover had no significant effect. In the results of individual 3-axis compression analysis, the compression load in the lateral long axis direction was the least and this result was found to be very important to achieve the overall goal in designing the battery housing. To reduce the weight of the presented battery housing model, the cell molding method was applied. It was confirmed that it was very effective in reducing injection pressure, clamping force and weight.

  • PDF