• Title/Summary/Keyword: Grid-computing

Search Result 533, Processing Time 0.025 seconds

Grid Transaction Network Modeling and Simulation for Resource Management in Grid Computing Environment (그리드 컴퓨팅 환경에서의 효율적인 자원 관리를 위한 그리드 거래망 모델링과 시뮬레이션)

  • Jang, Sung-Ho;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.3
    • /
    • pp.1-9
    • /
    • 2006
  • As an effective solution to resolve complex computing problems and to handle geographically dispersed data sets, grid computing has been noticed. Grid computing separates an application to several parts and executes on heterogeneous computing platforms simultaneously. The most important problem in grid computing environments is to manage grid resources and to schedule grid resources. This paper proposes a grid transaction network model that is applicable for resource management and scheduling in grid computing environment and presents a grid resource bidding algorithm for grid users and grid resource providers. Using DEVSJAVA modeling and simulation, this paper evaluates usefulness and efficiency of the proposed model.

  • PDF

Construction of the Grid Portal for the Integrated Development Environment in Enterprise Grid. (Enterprise Grid 환경에서의 Integrated Development Environment Grid Portal 구축 제안)

  • Hong Pil-Du;Lee Yong-Woo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.58-60
    • /
    • 2005
  • 기업의 computing process에서는 기업의 주요업무 및 전략을 분석 정의하여 이것을 computing resource에 실행한다. 이를 위하여, 일반적으로, 여러 개발자들이 공유개발환경을 통하여 프로세스를 개발하고 이를 운영한다. 현재 Enterprise Computing Environment에서는 Grid Computing이 필연적 과제이다. Grid Computing에서, Grid Portal은 통합사용자인터페이스를 제공하여 주는 중요한 요소이다. 그러나, 현재의 대부분의 Grid Portal들은 Job Submit 처리를 중점적으로 구현하는데 주력하고 있기 때문에, 기업 computing process의 중요한 요소인 통합적 개발환경에 대한 지원이 부족하다. 본 연구에서는, 이런 부족한 부분을 개선하여, Enterprise Grid 환경을 위한 통합개발환경의 Grid Portal의 모델을 제안한다.

  • PDF

Intergrating Security Model for Mobile-Grid (Mobile-Grid 환경에서의 통합 보안 모델)

  • Kang, Su-Youen;Lee, Sung-Young
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.585-588
    • /
    • 2002
  • Grid provides integral ing system that enables to use distributed computing resource and services as adapts traditional infrastructures to overcome the distributed computing environments. But, computing today is moving away from a restriction of the desktop, becoming diffused into our surrounding and onto our personal digital devices. In such mobile computing environments, users expects to access resource and services at any time from anywhere in such Mobile-Grid computing. This expectation results security issues, since the computing environments is expanded. This paper describes the security challenges in Mobile-Grid computing, explaining why traditional security mechanism fail to meet the demands of these environments. This paper describes policy driven security mechanism enabled entity to use service and data in trust Mobile-Grid environments and a set of security service module that need to be realized in the Mobile-Grid security architecture presents a set of use pattern that show hew these modules can be used for billing service in a secure Mobile-Grid environments.

  • PDF

A Basic Study of Thermal-Fluid Flow Analysis Using Grid Computing (그리드 컴퓨팅을 이용한 열유동 해석 기법에 관한 기초 연구)

  • Hong, Seung-Do;Ha, Yeong-Man;Cho, Kum-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.604-611
    • /
    • 2004
  • Simulation of three-dimensional turbulent flow with LES and DNS lakes much time and expense with currently available computing resources and requires big computing resources especially for high Reynolds number. The emerging alternative to provide the required computing power and working environment is the Grid computing technology. We developed the CFD code which carries out the parallel computing under the Grid environment. We constructed the Grid environment by connecting different PC-cluster systems located at two different institutes of Pusan National University in Busan and KISTI in Daejeon. The specification of PC-cluster located at two different institutes is not uniform. We run our parallelized computer code under the Grid environment and compared its performance with that obtained using the homogeneous computing environment. When we run our code under the Grid environment, the communication time between different computer nodes takes much larger time than the real computation time. Thus the Grid computing requires the highly fast network speed.

An Efficient Scheduling Method for Grid Systems Based on a Hierarchical Stochastic Petri Net

  • Shojafar, Mohammad;Pooranian, Zahra;Abawajy, Jemal H.;Meybodi, Mohammad Reza
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.1
    • /
    • pp.44-52
    • /
    • 2013
  • This paper addresses the problem of resource scheduling in a grid computing environment. One of the main goals of grid computing is to share system resources among geographically dispersed users, and schedule resource requests in an efficient manner. Grid computing resources are distributed, heterogeneous, dynamic, and autonomous, which makes resource scheduling a complex problem. This paper proposes a new approach to resource scheduling in grid computing environments, the hierarchical stochastic Petri net (HSPN). The HSPN optimizes grid resource sharing, by categorizing resource requests in three layers, where each layer has special functions for receiving subtasks from, and delivering data to, the layer above or below. We compare the HSPN performance with the Min-min and Max-min resource scheduling algorithms. Our results show that the HSPN performs better than Max-min, but slightly underperforms Min-min.

Design of User Data Management System for Grid Service (그리드 서비스를 위한 사용자 데이터 관리 시스템 설계)

  • Oh, Young-Ju;Kim, Beob-Kyun;An, Dong-Un;Chung, Seung-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.224-226
    • /
    • 2005
  • Grid computing enables the fundamental computing shift from a localized resource computing model to a fully-distributed virtual organization with shared resources. In the grid computing environment, grid users usually get access rights by mapping their credential to local account. The mapped total account is temporally belongs to grid user. So, data on the secondary storage, which is produced by grid operation, can increase the load of system administration or can issue grid user's privacy. In this paper, we design a data management system for grid user to cover these problems. This system implements template account mechanism and manages local grid data.

  • PDF

Implementation of an Intelligent Grid Computing Architecture for Transient Stability Constrained TTC Evaluation

  • Shi, Libao;Shen, Li;Ni, Yixin;Bazargan, Masound
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.20-30
    • /
    • 2013
  • An intelligent grid computing architecture is proposed and developed for transient stability constrained total transfer capability evaluation of future smart grid. In the proposed intelligent grid computing architecture, a model of generalized compute nodes with 'able person should do more work' feature is presented and implemented to make full use of each node. A timeout handling strategy called conditional resource preemption is designed to improve the whole system computing performance further. The architecture can intelligently and effectively integrate heterogeneous distributed computing resources around Intranet/Internet and implement the dynamic load balancing. Furthermore, the robustness of the architecture is analyzed and developed as well. The case studies have been carried out on the IEEE New England 39-bus system and a real-sized Chinese power system, and results demonstrate the practicability and effectiveness of the intelligent grid computing architecture.

Volume Rendering using Grid Computing for Large-Scale Volume Data

  • Nishihashi, Kunihiko;Higaki, Toru;Okabe, Kenji;Raytchev, Bisser;Tamaki, Toru;Kaneda, Kazufumi
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.111-120
    • /
    • 2010
  • In this paper, we propose a volume rendering method using grid computing for large-scale volume data. Grid computing is attractive because medical institutions and research facilities often have a large number of idle computers. A large-scale volume data is divided into sub-volumes and the sub-volumes are rendered using grid computing. When using grid computing, different computers rarely have the same processor speeds. Thus the return order of results rarely matches the sending order. However order is vital when combining results to create a final image. Job-Scheduling is important in grid computing for volume rendering, so we use an obstacle-flag which changes priorities dynamically to manage sub-volume results. Obstacle-Flags manage visibility of each sub-volume when line of sight from the view point is obscured by other subvolumes. The proposed Dynamic Job-Scheduling based on visibility substantially increases efficiency. Our Dynamic Job-Scheduling method was implemented on our university's campus grid and we conducted comparative experiments, which showed that the proposed method provides significant improvements in efficiency for large-scale volume rendering.

Design & Implementation of a Multimedia communication Grid (멀티미디어 통신 그리드의 설계 및 구현)

  • Kim, Il-Min
    • Journal of Digital Contents Society
    • /
    • v.8 no.1
    • /
    • pp.27-33
    • /
    • 2007
  • Grid is a distributed computing model for next to the WWW computing model. Java language is developed for distributed computing and is being commonly used for WWW applications. Java can also be used for designing and implementing Grid systems. We introduced the basic concepts of Grid and implemented a new computing grid system. We test proper distributed applications on the multimedia grid system and analyzed the execution results. The execution results showed that the grid performance was much better than the legacy systems.

  • PDF

A Fundamental Study of Thermal-Fluid Flow Analysis using High Performance Computing under the GRID (그리드 환경하에서 고성능 컴퓨팅을 이용한 열유동 해석 기법에 관한 기초연구)

  • Hong, Seung-Do;Lee, Dae-Sung;Lee, Jae-Ryong;Ha, Man-Yeong;Lee, Sang-San
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.928-933
    • /
    • 2003
  • For simulation of three-dimensional turbulent flow with LES and DNS takes much time and expense with current available computing resources. It is nearly impossible to simulate turbulent flow with high Reynolds number. So, the emerging alternative is the Grid computing for needed computation power and working environment. In this study, the CFD code was parallelized to adapt it for the parallel computing under the Grid environment. In the first place, the Grid environment was built to connect the PC-Cluster facilities belong to the different institutions using communication network system. And CFD applications were calculated to check the performance of the parallel code developed for the Grid environment. Although it is a fundamental study, it brings about a important meaning as first step in research of the Grid.

  • PDF