• Title/Summary/Keyword: Grid map

Search Result 479, Processing Time 0.032 seconds

LiDAR Static Obstacle Map based Position Correction Algorithm for Urban Autonomous Driving (도심 자율주행을 위한 라이다 정지 장애물 지도 기반 위치 보정 알고리즘)

  • Noh, Hanseok;Lee, Hyunsung;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents LiDAR static obstacle map based vehicle position correction algorithm for urban autonomous driving. Real Time Kinematic (RTK) GPS is commonly used in highway automated vehicle systems. For urban automated vehicle systems, RTK GPS have some trouble in shaded area. Therefore, this paper represents a method to estimate the position of the host vehicle using AVM camera, front camera, LiDAR and low-cost GPS based on Extended Kalman Filter (EKF). Static obstacle map (STOM) is constructed only with static object based on Bayesian rule. To run the algorithm, HD map and Static obstacle reference map (STORM) must be prepared in advance. STORM is constructed by accumulating and voxelizing the static obstacle map (STOM). The algorithm consists of three main process. The first process is to acquire sensor data from low-cost GPS, AVM camera, front camera, and LiDAR. Second, low-cost GPS data is used to define initial point. Third, AVM camera, front camera, LiDAR point cloud matching to HD map and STORM is conducted using Normal Distribution Transformation (NDT) method. Third, position of the host vehicle position is corrected based on the Extended Kalman Filter (EKF).The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment and showed better performance than only lane-detection algorithm. It is expected to be more robust and accurate than raw lidar point cloud matching algorithm in autonomous driving.

A Study of Land Suitability Analysis by Integrating GSIS with Artificial Neural Networks (GSIS와 인공신경망의 결합에 의한 토지적합성분석에 관한 연구)

  • 양옥진;정영동
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.179-189
    • /
    • 2000
  • This study is tried to organic combination in implementing the suitability analysis of urban landuse between GSIS and ANN(Artificial Neural Network). ANN has merit that can decide rationally connectivity weights among neural network nodes through procedure of learning. It is estimated to be possible that replacing the weight among factors needed in spatial analysis of the connectivity weight on neural network. This study is composed of two kinds of neural networks to be executed. First neural network was used in the suitability analysis of landuse and second one was oriented to analyze of optimum landuse pattern. These neural networks were learned with back-propagation algorithm using the steepest gradient which is embodied by C++ program and used sigmoid function as a active function. Analysis results show landuse suitability map and optimum landuse pattern of study area consisted of residental, commercial. industrial and green zone in present zoning system. Each result map was written by the Grid format of Arc/Info. Also, suitability area presented in the suitability map and optimum landuse pattern show distribution pattern consistent with theroretical concept or urban landuse plan in aspect of location and space structure.

  • PDF

Development of Reinforcement Learning-based Obstacle Avoidance toward Autonomous Mobile Robots for an Industrial Environment (산업용 자율 주행 로봇에서의 격자 지도를 사용한 강화학습 기반 회피 경로 생성기 개발)

  • Yang, Jeong-Yean
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.3
    • /
    • pp.72-79
    • /
    • 2019
  • Autonomous locomotion has two essential functionalities: mapping builds and updates maps by uncertain position information and measured sensor inputs, and localization is to find the positional information with the inaccurate map and the sensor information. In addition, obstacle detection, avoidance, and path designs are necessarily required for autonomous locomotion by combining the probabilistic methods based on uncertain locations. The sensory inputs, which are measured by a metric-based scanner, have difficulties of distinguishing moving obstacles like humans from static objects like walls in given environments. This paper proposes the low resolution grid map combined with reinforcement learning, which is compared with the conventional recognition method for detecting static and moving objects to generate obstacle avoiding path. Finally, the proposed method is verified with experimental results.

Parallelization of Probabilistic RoadMap for Generating UAV Path on a DTED Map (DTED 맵에서 무인기 경로 생성을 위한 Probabilistic RoadMap 병렬화)

  • Noh, Geemoon;Park, Jihoon;Min, Chanoh;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.157-164
    • /
    • 2022
  • In this paper, we describe how to implement the mountainous terrain, radar, and air defense network for UAV path planning in a 3-D environment, and perform path planning and re-planning using the PRM algorithm, a sampling-based path planning algorithm. In the case of the original PRM algorithm, the calculation to check whether there is an obstacle between the nodes is performed 1:1 between nodes and is performed continuously, so the amount of calculation is greatly affected by the number of nodes or the linked distance between nodes. To improve this part, the proposed LineGridMask method simplifies the method of checking whether obstacles exist, and reduces the calculation time of the path planning through parallelization. Finally, comparing performance with existing PRM algorithms confirmed that computational time was reduced by up to 88% in path planning and up to 94% in re-planning.

A Study on Application of PC Based Digital Photogrammetric System - Focusing on Producing Digital Map, DEM and Orthophoto - (PC 기반 수치사진측량시스템의 활용방안에 관한 연구 - 수치지도, DEM, 정사영상 제작을 중심으로-)

  • Park Byung Uk;Seo Sang Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.303-312
    • /
    • 2005
  • Digital map, DEM and orthophoto were produced by using PC based digital photogrammetric system and aerial photo images that were obtained with scale of 1/5,000 and scanning density of 1200dpi and 600dpi, and the accuracies of these outputs were evaluated by various methods. Non-skilled operator produced digital map with PC based digital photogrammetric system and aerial photo images scanned by 1200dpi. The results showed that it was impossible to insert contour lines, but the rest elements could be drawn with the accuracy of 1/1,000. In automatic generation of DEM, scanning density of aerial photo and grid interval of DEM didn't affect the accuracy of DEM. In production of orthophoto, we could know that the larger grid interval of DEM, the lower accuracy of orthophoto, but scanning density of original image had more effect on quality of orthophoto. By the way, accuracy comparison between orthophoto and digital map with same check points showed that orthophoto was more accurate than digital map, and orthophoto could be used in more diverse areas. Hereafter in civilian part, aerial photo image and PC based digital photogrammetric system could make practical application of data correction and update in GIS.

Design and Implementation of Virtual Grid and Filtering Technique for LBSNS (LBSNS를 위한 Virtual Grid 및 필터링기법의 설계 및 구현)

  • Lee, Eun-Sik;Cho, Dae-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.91-94
    • /
    • 2011
  • The LBSNS(Location-Based Social Networking Service) service has been well-received by researchers and end-users, such as Twitter. Location-Based service of Twitter is now structured that users could not subscribe the information of their interesting local area. Those who being following from someone tweet message included information of local area to them just for their own interesting. However, follower may receive that kind of tweet. In order to handle the problem, we propose filtering technique using spatial join. The first work for filtering technique is to add a location information to tweets and users. In this paper, location information is represented by MBR(Minimum Bounding Rectangle). Location information is divided into dynamic property and static property. Suppose that users are continuously moving, that means one of the dynamic property's example. At this time, a massive continous query could cause the problem in server. In this paper, we create Virtual Grid on Google Map for reducing frequency of query, and conclude that it is useful for server.

  • PDF

A Shortest Path Planning Algorithm for Mobile Robots Using a Modified Visibility Graph Method

  • Lee, Duk-Young;Koh, Kyung-Chul;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1939-1944
    • /
    • 2003
  • This paper presents a global path planning algorithm based on a visibility graph method, and applies additionally various constraints for constructing the reduced visibility graph. The modification algorithm for generating the rounded path is applied to the globally shortest path of the visibility graph using the robot size constraint in order to avoid the obstacle. In order to check the visibility in given 3D map data, 3D CAD data with VRML format is projected to the 2D plane of the mobile robot, and the projected map is converted into an image for easy map analysis. The image processing are applied to this grid map for extracting the obstacles and the free space. Generally, the tree size of visibility graph is proportional to the factorial of the number of the corner points. In order to reduce the tree size and search the shortest path efficiently, the various constraints are proposed. After short paths that crosses the corner points of obstacles lists up, the shortest path among these paths is selected and it is modified to the combination of the line path and the arc path for the mobile robot to avoid the obstacles and follow the rounded path in the environment. The proposed path planning algorithm is applied to the mobile robot LCAR-III.

  • PDF

Radial Reference Map-Based Location Fingerprinting Technique

  • Cho, Kyoung-Woo;Chang, Eun-Young;Oh, Chang-Heon
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.4
    • /
    • pp.207-214
    • /
    • 2016
  • In this paper, we propose a radial reference map-based location fingerprinting technique with constant spacing from an access point (AP) to all reference points by considering the minimum dynamic range of the received signal strength indicator (RSSI) obtained through an experiment conducted in an indoor environment. Because the minimum dynamic range, 12 dBm, of the RSSI appeared every 20 cm during the training stage, a cell spacing of 80 cm was applied. Furthermore, by considering the minimum dynamic range of an RSSI in the location estimation stage, when an RSSI exceeding the cumulative average by ${\pm}6dBm$ was received, a previously estimated location was provided. We also compared the location estimation accuracy of the proposed method with that of a conventional fingerprinting technique that uses a grid reference map, and found that the average location estimation accuracy of the conventional method was 21.8%, whereas that of the proposed technique was 90.9%.

A Sonar-based Position Estimation Algorithm for Localization of Mobile Robots (초음파 센서를 이용한 이동로봇의 자기위치 파악 알고리즘)

  • Joe, Woong-Yeol;Oh, Sang-Rok;Yu, Bum-Jae;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.159-162
    • /
    • 2002
  • This paper presents a modified localization scheme of a mobile robot. When it navigates, the position error of a robot is increased and doesn't go to a goal point where the robot intends to go at the beginning. The objective of localization is to estimate the position of a robot precisely. Many algorithms were developed and still are being researched for localization of a mobile robot at present. Among them, a localization algorithm named continuous localization proposed by Schultz has some merits on real-time navigation and is easy to be implemented compared to other localization schemes. Continuous Localization (CL) is based on map-matching algorithm with global and local maps using only ultrasonic sensors for making grid maps. However, CL has some problems in the process of searching the best-scored-map, when it is applied to a mobile robot. We here propose fast and powerful map-matching algorithm for localization of a mobile robot by experiments.

  • PDF

Design of Falling Context-aware System based on Notification Service using Location Information and Behavior Data

  • Kwon, TaeWoo;Lee, Daepyo;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.42-50
    • /
    • 2018
  • The majority of existing falling recognition techniques provide service by recognizing only that the falling occurred. However, it is important to recognize not only the occurrence of falling but also the situation before and after the falling, as well as the location of the falling. In this paper, we design and propose the falling notification service system to recognize and provide service. This system uses the acceleration sensor of the smartphone to recognize the occurrence of a falling and the situation before and after the falling. In order to check the location of falling, GPS sensor data is used in the Google Map API to map to the map. Also, a crosswalk map converted into grid-based coordinates based on the longitude and latitude of the crosswalk is stored, and the locations before and after falling are mapped. In order to reduce the connection speed and server overload for real-time data processing, fog computing and cloud computing are designed to be distributed processing.