• Title/Summary/Keyword: Grid effects

Search Result 627, Processing Time 0.028 seconds

Seismic vibration control for bridges with high-piers in Sichuan-Tibet Railway

  • Chen, Zhaowei;Han, Zhaoling;Fang, Hui;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.749-759
    • /
    • 2018
  • Aiming at widely used high-pier bridges in Sichuan-Tibet Railway, this paper presents an investigation to design and evaluate the seismic vibration reduction effects of several measures, including viscous damper (VD), friction pendulum bearing (FPB), and tuned mass damper (TMD). Primarily, according to the detailed introduction of the concerned bridge structure, dynamic models of high-pier bridges with different seismic vibration reduction (SVR) measures are established. Further, the designs for these SVR measures are performed, and the optimal parameters of these measures are investigated. On this basis, the vibration reduction effects of these measures are analyzed and assessed subject to actual earthquake excitations in Wenchuan Earthquake (M=8.0), and the most appropriate SVR measure for high-pier bridges in Sichuan-Tibet Railway is determined at the end of the work. Results show that the height of pier does not obviously affect the performances of the concerned SVR measures. Comprehensively considering the vibration absorption performance, installation and maintenance of all the employed measures in this paper, TMD is the best one to absorb vibrations induced by earthquakes.

Control of free surface shape in the electromagnetic casting process (전자기 주조공정에서의 자유표면 형상 제어)

  • 박재일;강인석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.612-615
    • /
    • 1996
  • In the continuous casting process, molten metal contacts the mold wall and the molten metal surface is subject to the mold oscillation. The mold oscillation results in the oscillation marks on the surface of solidified steel, which has undesirable effects on the quality of slabs. In order to reduce the oscillation marks by achieving soft contact of molten metal with the mold surface, alternating magnetic field is applied to the surface of molten metal. However, if the magnetic field strength becomes too strong, the melt flow induced by the magnetic field. causes the instability of the molten metal surface, which has also the bad influence on the slab quality. Therefore, it is very important to choose the optimal position of the inductor coil and the optimal level of electric power to minimize the surface defects. In the present work, as a first step toward the optimization problem of the process, numerical studies are performed to investigate the effects of coil position and the electric power level on the meniscus shape and the flow field. As numerical tools, the boundary integral equation method(BIEM) is used for the magnetic field analysis and the finite difference method (FDM) with orthogonal grid generation is used for the flow analysis.

  • PDF

Mitigation Effects of Incident Bore Impact Loads Acting on a Tall Structure by Installation of Obstacles (사각기둥의 전면 부가구조물 설치로 인한 입사붕괴파의 충격력 완화 효과)

  • Lee, Byung-Hyuk;Hwang, Sung-Chul;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.93-101
    • /
    • 2013
  • The incident bore impact loads acting on a tall structure is simulated using the refined Moving Particle Simulation (MPS) method. The particle method is more feasible and effective than conventional grid-based methods for the violent free-surface problems. In the present study, the simulation results for the temporal change of the hydrodynamic force on the structure and longitudinal velocity component around the structure are compared with the experiments (Radd and Bidoae, 2005). And the mitigation effects by installation of various obstacles in front of the main structure are investigated and discussed form the simulation results.

Incompressible Viscous Flow Analysis around a High-Speed Train Including Cross-Wind Effects (측풍영향을 고려한 고속전철 주위의 비압축성 점성 유동 해석)

  • Jung Y. R.;Park W. G.;Kim H. W.;Ha S. D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.55-63
    • /
    • 1995
  • The flow field around a high-speed train including cross-wind effects has been simulated. This study solves 3-D unsteady incompressible Navier-Stokes equations in the inertial frame using the iterative time marching scheme. The governing equations are differenced with 1st-order accurate backward difference scheme for the time derivatives, 3th-order accurate QUICK scheme for the convective terms and 2nd-order accurate central difference scheme for the viscous terms. The Marker-and-Cell concept was applied to efficiently solve continuity equation, which is differenced with 2nd-order accurate central difference scheme. The 4th-order artificial damping is added to the continuity equation for numerical stability. A C-H type of elliptic grid system is generated around a high-speed train including ground. The Baldwin-Lomax turbulent model was implemented to simulate the turbulent flows. To validate the present procedure, the flow around a high speed train at constant yaw angle of $45^{\circ}\;and\;90^{\circ}$ has been simulated. The simulation shows 3-D vortex generation in the lee corner. The flow separation is also observed around the rear of the train. It has concluded that the results of present study properly agree with physical flow phenomena.

  • PDF

Effects of Free-Stream Turbulence Intensity and Blowing Ratio on Film Cooling of Turbine Blade Leading Edge (자유유동 난류강도와 분사비가 터빈 블레이드 선단 막냉각 특성에 미치는 영향)

  • Kim, S.M.;Kim, Youn-J.;Cho, H.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.746-751
    • /
    • 2001
  • We used a cylindrical model which simulates turbine blade leading edge to investigate the effects of free-stream turbulence intensity and blowing ratio on film cooling of turbine blade leading edge. Tests are carried out in a low-speed wind tunnel on a cylindrical model with three rows of injection holes. Mainstream Reynolds number based on the cylinder diameter was $7.1\times10^4$. Two types of turbulence grid are used to increase a free-stream turbulence intensity. The effect of coolant blowing ratio was studied for various blowing ratios. For each blowing ratios, wall temperatures around the surface of the test model are measured by thermocouples installed inside the model. Results show that blowing ratios have small effect on spanwise-averaged film effectiveness at high free-stream turbulence intensity. However, an increase in free-stream turbulence intensity enhances significantly spanwise-averaged film effectiveness at low blowing ratio.

  • PDF

Wind field generation for performance-based structural design of transmission lines in a mountainous area

  • Lou, Wenjuan;Bai, Hang;Huang, Mingfeng;Duan, Zhiyong;Bian, Rong
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.165-183
    • /
    • 2020
  • The first step of performance-based design for transmission lines is the determination of wind fields as well as wind loads, which are largely depending on local wind climate and the surrounding terrain. Wind fields in a mountainous area are very different with that in a flat terrain. This paper firstly investigated both mean and fluctuating wind characteristics of a typical mountainous wind field by wind tunnel tests and computational fluid dynamics (CFD). The speedup effects of mean wind and specific turbulence properties, i.e., turbulence intensity, power spectral density (PSD) and coherence function, are highlighted. Then a hybrid simulation framework for generating three dimensional (3D) wind velocity field in the mountainous area was proposed by combining the CFD and proper orthogonal decomposition (POD) method given the properties of the target turbulence field. Finally, a practical 220 kV transmission line was employed to demonstrate the effectiveness of the proposed wind field generation framework and its role in the performance-based design. It was found that the terrain-induce turbulence effects dominate the performance-based structural design of transmission lines running through the mountainous area.

The Effects of Subliminal Music with Balance Imagery Training on Balance and Concentration

  • Yoon, Jung-Gyu;Lee, Sang-Bin;Seo, Hwa-Mi;Baek, Eun-Kyung;Seol, Ha-Na;Yoo, Kyung-Tae
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.1 no.2
    • /
    • pp.155-161
    • /
    • 2010
  • Purpose: The purpose of this study was to estimate the effects of subliminal music with balance imagery training on balance and concentration. Methods: The participants were 45 seniors in an undergraduate school in Korea. The subliminal music with balance imagery training intervention was carried out for 20 minutes. Other interventions were also carried out for 20 minutes. 12 seniors(Group A) listened to subliminal music with balance imagery training, 12 seniors(Group B) listened to subliminal music, 11 seniors(Group C) received balance imagery training, and 10 seniors(Group D) had no intervention(Control group). The grid test is related to measured levels of concentration intensity. Romberg one legged standing test was carried out for 30 seconds. The collected data was analyzed by one-paired t test and one way ANOVA using the SPSS Windows 12 ver. program. Results: The major findings of this study were as follows: Concentration levels of Group A and C improved, and balance levels of Group C and D improved. There was a statistically significant decrease in concentration between Group A and B, Group A and C after intervention. Conclusion: These findings suggest that listening to subliminal music with balance imagery training may be useful in managing concentration in seniors. So it provides basic information for further concentration on improving education on music with balance imagery training.

  • PDF

EFFECTS OF THE FREE SURFACE ON THE FLOW PATTERN PAST A SQUARE CYLINDER (정방형 실린더 주위 유동패턴에 대한 자유수면의 영향)

  • Ahn, Hyungsu;Yang, Kyung-Soo
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.81-87
    • /
    • 2017
  • The characteristics of flow past a square cylinder submerged under the free surface have been numerically studied. An immersed boundary method was adopted for implementation of the cylinder cross-section in a Cartesian grid system. Also, a level-set method was used to capture the interface of the two fluids. The case for Reynolds number 150 was examined. At the specific Reynolds number, by varying the gap ratio(0.25, 0.40, 0.55, 0.70, 1.00, 1.50, 2.50, 5.00) the effects of the free surface on the force coefficients and Strouhal number of vortex shedding were identified. The presence of the free surface very close to the cylinder significantly affects the shedding pattern, resulting in considerable deviation of the force coefficients and Strouhal number from those of the single-phase flow. In addition, the influence of Froude number was considered in this study. By increasing Froude number(0.2-0.4), flow topology change was identified at the specific gap ratios(0.40, 0.70, 1.50, 5.00).

Effect of the Velocity Suppression Techniques for a Mushy Solidification on Steady-state Mushy Region (머시응고에 대한 속도감쇠 기법이 정상상태 머시영역에 미치는 영향)

  • Kim, Woo-Seung;Kim, Deok-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1657-1668
    • /
    • 1998
  • In the analysis of a mushy solidification system with natural convection using a fixed grid method, the enthalpy method has been used to account for the release of latent heat. The variable viscosity, Darcy source, and hybrid methods have been employed for the velocity suppression in a mushy region. The choice of the values of solid viscosity and permeability constant in conjunction with the Darcy source term plays an important role in forming the location and shape of the phase boundaries. In this work the effects of these major parameters related to steady-state behavior in the system of mushy solidification are investigated through a simple test problem. The effective specific heat based on the spatial gradients of the enthalpy and temperature is adopted for the treatment of the release of latent heat. The effects of the Prandtl and Rayleigh numbers on the shape of mushy region are examined using the hybrid method.

Effects of Low and Moderate Intensity Treadmill Exercise on Functional Recovery and Histological Changes After Spinal Cord Injury in the Rats (척수손상 백서모델에서 저강도 및 중강도 트레드밀 운동이 운동기능회복 및 조직학적 변화에 미치는 영향)

  • Kim, Gi-Do;Kim, Gye-Yeop;Kim, Eun-Jung
    • Physical Therapy Korea
    • /
    • v.16 no.2
    • /
    • pp.41-49
    • /
    • 2009
  • This study was designed to investigate the effects of treadmill exercise of low-intensity and moderate- intensity on the functional recovery and histological change in spinal cord injury (SCI) rats. SCI was induced by the spinal cord impactor dropped after laminectomy. Experimental groups were divided into the Group I (normal control), Group II (non-treatment after SCI induction), Group III (low-intensity treadmill exercise after SCI induction), Group IV (moderate-intensity treadmill exercise after SCI induction). After operation, rats were tested at modified Tarlov scale at 2 days with divided into 4 groups, and motor behavior test (BBB locomotor rating scale, Grid walk test) was examined at 3, 7, 14, and 21 days. For the observation of damage change and size of the organized surface in spinal cord, histopathological studies were performed at 21 days by H & E, and BDNF(brain-derived neutrophic factor) & Trk-b immunohistochemistry studies were performed at 1, 3, 7, 14, 21 days. According to the results, treadmill exercise can play a role in facilitating recovery of locomotion following spinal cord injury. Specially, moderate-intensity treadmill exercise after SCI induction was most improvement in functional recovery and histological change.

  • PDF