• Title/Summary/Keyword: Grid Topology

Search Result 188, Processing Time 0.027 seconds

A Three-Phase High Frequency Semi-Controlled Battery Charging Power Converter for Plug-In Hybrid Electric Vehicles

  • Amin, Mahmoud M.;Mohammed, Osama A.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.490-498
    • /
    • 2011
  • This paper presents a novel analysis, design, and implementation of a battery charging three-phase high frequency semi-controlled power converter feasible for plug-in hybrid electric vehicles. The main advantages of the proposed topology include high efficiency; due to lower power losses and reduced number of switching elements, high output power density realization, and reduced passive component ratings proportionally to the frequency. Additional advantages also include grid economic utilization by insuring unity power factor operation under different possible conditions and robustness since short-circuit through a leg is not possible. A high but acceptable total harmonic distortion of the generator currents is introduced in the proposed topology which can be viewed as a minor disadvantage when compared to traditional boost rectifiers. A hysteresis control algorithm is proposed to achieve lower current harmonic distortion for the rectifier operation. The rectifier topology concept, the principle of operation, and control scheme are presented. Additionally, a dc-dc converter is also employed in the rectifier-battery connection. Test results on 50-kHz power converter system are presented and discussed to confirm the effectiveness of the proposed topology for PHEV applications.

Comparative performance evaluation of 10kV IGCTs in 3L NPC and ANPC Converter in PMSG MV Wind Turbines (PMSG 풍력발전기용 3L NPC와 ANPC 컨버터에서의 10kV IGCT 성능 비교 평가)

  • Lyngdoh, Amreena Lama;Suh, Youngsug;Park, Byoung-Gun;Kim, Jiwon
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.86-88
    • /
    • 2018
  • The three level(3L) neutral point clamped (NPC) voltage source converter (VSC) topology is widely used for grid interface in high power wind energy due to its superior performance as compared to the two level(2L) VS. However, one of the major drawbacks of this topology is the unequal dispersion of loss and therefore the junction temperature among the power devices. The 3L ANPC topology derived from the NPC topology was proposed to resolve this drawback of unequal loss profile of 3L NPC. The 3L ANPC can work under various switching strategies. In this paper a comparative study of the various switching strategies of 3L ANPC using the recently developed 10kV IGCTs which has the capability to raise the current and voltage rating of the wind turbines is carried out. The comparison is performed using ABB make 10kV IGCT 5SHY17L9000 and PLECs simulations.

  • PDF

A High Performance Interleaved Bridgeless PFC for Nano-grid Systems

  • Cao, Guoen;Lim, Jea-Woo;Kim, Hee-Jun;Wang, Huan;Wang, Yibo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1156-1165
    • /
    • 2017
  • A high performance interleaved bridgeless boost power factor correction (PFC) rectifier operating under the critical current conduction mode (CrM) is proposed in this paper to improve the efficiency and system performance of various applications, such as nano-grid systems. By combining the interleaved technique with the bridgeless topology, the circuit contains two independent branches without rectifier diodes. The branches operate in interleaved mode for each respective half-line period. Moreover, when operating in CrM, all the power switches take on soft-switching, thereby reducing switching losses and raising system efficiency. In addition, the input current flows through a minimum amount of power devices. By employing a commercial PFC controller, an effective control scheme is used for the proposed circuit. The operating principle of the proposed circuit is presented, and the design considerations are also demonstrated. Simulations and experiments have been carried out to evaluate theoretical analysis and feasibility of the proposed circuit.

Suppression of Common-Mode Voltage in a Multi-Central Large-Scale PV Generation Systems for Medium-Voltage Grid Connection (중전압 계통 연계를 위한 멀티 센트럴 대용량 태양광 발전 시스템의 공통 모드 전압 억제)

  • Bae, Young-Sang;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.31-40
    • /
    • 2014
  • This paper describes an optimal configuration for multi-central inverters in a medium-voltage (MV) grid, which is suitable for large-scale photovoltaic (PV) power plants. We theoretically analyze a proposed common-mode equivalent model for problems associated with multi-central transformerless-type three-phase full bridge(3-FB) PV inverters employing two-winding MV transformers. We propose a synchronized PWM control strategy to effectively reduce the common-mode voltages that may simultaneously occur. In addition, we propose that the existing 3-FB topology may also have the configuration of a multi-central inverter with a two-winding MV transformer by making a simple circuit modification. Simulation and experimental results of three 350kW PV inverters in a multi-central configuration verify the effectiveness of the proposed synchronization control strategy. The modified transformerless-type 3-FB topology for a multi-central PV inverter configuration is verified using an experimental prototype of a 100kW PV inverter.

Phase-Shifted Full-Bridge Converter for Welding Power Supply Capable of Using 220 V, 440 V 3-Phase Grid Voltages (220V, 440V 3상 계통전압 혼용이 가능한 용접 전원장치용 위상천이 풀브리지 컨버터)

  • Yun, Duk-Hyeon;Lee, Woo-Seok;Lee, Jun-Young;Lee, Il-Oun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.372-375
    • /
    • 2021
  • A three-leg inverter-type isolated DC-DC Converter that can use 220 and 440 V grid input voltages is introduced. The secondary circuit structure of the proposed topology is center-tap, which is the same as the conventional phase-shifted full-bridge converter. However, the primary circuit structure is composed of a three-leg inverter structure and a transformer, in which two primary windings are connected in series. The proposed circuit structure has a wider input voltage range than the conventional phase-shifted full-bridge converter, and the circulating-current on the primary-side is reduced. In addition, the voltage stress at the secondary rectifier is greatly improved, and high efficiency can be achieved at a high input voltage by removing the snubber circuit added to the conventional converter. Prototype converters with input DC of 311 V, output of 622 V, and 50 V and 6 kW class specifications were designed and manufactured to verify the validity of the proposed topology; the experimental results are presented.

MPPT Method of Grid-connected Photovoltaic Inverter (계통연계형인버터의 태양광발전시스템의 최대출력 제어법)

  • Kim, Ki-Hyun;Yu, Gwon-Jong;Jung, Young-Seok;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1293-1295
    • /
    • 2001
  • Recently, according to developing industry and life style, power consumption have been increased year after year. Currently these much power demand from power consumer weakening the allowable power reverse margin in summer. As on of the remedies about this problem, the small scale grid-connected photovoltaic system is considered for auxiliary power source. Generally, grid-connected inverter have a isolation transformer for electrical isolation from utility. This paper proposed transformerless system topology an inquiry validity simulation.

  • PDF

Applying MPPT of Grid-connected Inverter (3Kw급 계통연계형 인버터의 MPPT적용)

  • Kim Ki-Hyun;Yu Gwon-Jong;Jung Young-Seok;Kim Young-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.135-137
    • /
    • 2001
  • Recently, according to developing industry and life style, power consumption have been increased year after year. Currently these much power demand from power consumer weakening the allowable power reverse margin in summer. As on of the remedies about this problem, the small scale grid-connected photovoltaic system is considered for auxiliary power source. Generally, grid-connected Inverter have a isolation transformer for electrical isolation from utility. This paper proposed transformerless system topology an inquiry validity simulation.

  • PDF

Research on the Direct-drive Wind Power Grid-connected System Based on the Back-to-back Double Closed-loop Full Control Strategy (연속 이중 폐쇄 루프 완전 제어 전략 기반 직접 구동 풍력 전력망 연결 시스템 연구)

  • Xian-Long Su;Han-Kil Kim;Kai Han;Hoe-Kyung Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.661-668
    • /
    • 2024
  • Based on the topology of the direct-drive permanent magnet synchronous wind power grid-connected system based on the power electronics full-power converter, the wind turbine model and the grid-side inverter model were studied, and the machine-side rectifier control based on current and speed double closed loops was designed. strategy, as well as a grid-side inverter control strategy based on current and voltage double closed loops, implementing a two-level back-to-back double closed-loop full control strategy. A system simulation model was built using Matlab/Simulink, and the operation of the unit was simulated when the wind speed changed step by step. The grid-connected current with the same phase and good sinusoidal nature of the grid voltage was output. The grid-connected system ran stably and efficiently. The simulation results The validity and rationality of the model, as well as the correctness and feasibility of the control strategy were verified.

A Dynamic Data Grid Replication Strategy Based on Internet Architecture (인터넷 구조 기반의 동적 데이터 그리드 복제 정책)

  • Kim, Jun-Sang;Lee, Won-Joo;Jeon, Chang-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.1-6
    • /
    • 2008
  • Data grid shares distributed large data via wide-band network. Such grid environment consumes much time for large data transmission. Because it is implemented on internet as physical network. Many replication strategies were proposed for solving this problem, but they are not optimal in real Data grid environments. Because they were proposed that based on logical topology without consideration of real internet architecture. Grid data access time is largely influenced by internet architecture as physical network of Data grid. In this paper, we propose a new data replication strategy RSIA(Replication Strategy based on Internet Architecture) based on internet architecture. The RSIA places replicas considering structural hierarchy in each element of internet, and avoid the performance bottlenecks to reduce system performance degradation when a data transfer. Through simulation, we show that the proposed RSIA data replication strategy improves the performance of Data Grid environment compared with previous strategies.

Active Frequency with a Positive Feedback Anti-Islanding Method Based on a Robust PLL Algorithm for Grid-Connected PV PCS

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.360-368
    • /
    • 2011
  • This paper proposes an active frequency with a positive feedback in the d-q frame anti-islanding method suitable for a robust phase-locked loop (PLL) algorithm using the FFT concept. In general, PLL algorithms for grid-connected PV PCS use d-q transformation and controllers to make zero an imaginary part of the transformed voltage vector. In a real grid system, the grid voltage is not ideal. It may be unbalanced, noisy and have many harmonics. For these reasons, the d-q transformed components do not have a pure DC component. The controller tuning of a PLL algorithm is difficult. The proposed PLL algorithm using the FFT concept can use the strong noise cancelation characteristics of a FFT algorithm without a PI controller. Therefore, the proposed PLL algorithm has no gain-tuning of a PI controller, and it is hardly influenced by voltage drops, phase step changes and harmonics. Islanding prediction is a necessary feature of inverter-based photovoltaic (PV) systems in order to meet the stringent standard requirements for interconnection with an electrical grid. Both passive and active anti-islanding methods exist. Typically, active methods modify a given parameter, which also affects the shape and quality of the grid injected current. In this paper, the active anti-islanding algorithm for a grid-connected PV PCS uses positive feedback control in the d-q frame. The proposed PLL and anti-islanding algorithm are implemented for a 250kW PV PCS. This system has four DC/DC converters each with a 25kW power rating. This is only one-third of the total system power. The experimental results show that the proposed PLL, anti-islanding method and topology demonstrate good performance in a 250kW PV PCS.