• Title/Summary/Keyword: Grid Interaction

Search Result 259, Processing Time 0.034 seconds

NUMERICAL MODELING FOR FLAME STABILIZATION OF GAS TURBINE COMBUSTOR (가스터빈 엔진의 화염안정성에 대한 수치모델링)

  • Kang Sungmo;Kim Yongmo;Chung Jae-Hwa;Ahn Dal-Hong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.201-206
    • /
    • 2005
  • In order to realistically represent the complex turbulence-chemistry interaction at the partially premixed turbulent lifted flames encountered in the gas turbine combustors, the combined conserved-scalar/level-set flamelet approach has been adopted. The parallel unstructured-grid finite-volume method has been developed to maintain the geometric flexibility and computational efficiency for the solution of the physically and geometrically complex flows. Special emphasis is given to the swirl effects on the combustion characteristics of the lean-premixed gas turbine combustor. Numerical results suggest that the present approach is capable of realistically simulating the combustion characteristics for the lean-premixed gas turbine engines and the lifted turbulent jet flame with a vitiated coflow.

  • PDF

Efficient Computation of Turbulent Flow Noise at Low Mach Numbers Via Hybrid Method (하이브리드기법을 이용한 저마하수 난류소음의 효율적 전산해석)

  • Seo, Jung-Hee;Moon, Young-J.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.814-821
    • /
    • 2007
  • A hybrid method is presented for efficient computation of turbulent flow noise at low Mach numbers. In this method, the turbulent flow field is computed by incompressible large eddy simulation (LES), while the acoustic field is computed with the linearized perturbed compressible equations (LPCE) derived in this study. Since LPCE is computed on the rather coarse acoustic grid with the flow variables and source term obtained by the incompressible LES, the computational efficiency of calculation is greatly enhanced. Furthermore, LPCE suppress the instability of perturbed vortical mode and therefore secure consistent and stable acoustic solutions. The proposed LES/LPCE hybrid method is applied to three low Mach number turbulent flow noise problems: i) circular cylinder, ii) isolated flat plate, and iii) interaction between cylinder wake and airfoil. The computed results are closely compared with the experimental measurements.

A Study on CFD Data Compression Using Hybrid Supercompact Wavelets

  • Hyungmin Kang;Lee, Dongho;Lee, Dohyung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1784-1792
    • /
    • 2003
  • A hybrid method with supercompact multiwavelets is suggested as an efficient and practical method to compress CFD dataset. Supercompact multiwavelets provide various advantages such as compact support and orthogonality in CFD data compression. The compactness is a crucial condition for approximated representation of CFD data to avoid unnecessary interaction between remotely spaced data across various singularities such as shock and vortices. But the supercompact multiwavelet method has to fit the CFD grid size to a product of integer and power of two, m${\times}$2$^n$. To resolve this problem, the hybrid method with combination of 3, 2 and 1 dimensional version of wavelets is studied. With the hybrid method, any arbitrary size can be handled without any shrinkage or expansion of the original problem. The presented method allows high data compression ratio for fluid simulation data. Several numerical tests substantiate large data compression ratios for flow field simulation successfully.

A Numerical Study on the Turbulent Flow Characteristics Near Compression TDC is Four-Valve-Per-Cylinder Engine (4밸브기관의 압축상사점 부근의 난류특성에 관한 수치해석적 연구)

  • 김철수;최영돈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 1993
  • The three-dimensional numerical analysis for in-cylinder flow of four-valve engine without intake port has been successfully computed. These computations have been performed using technique of the general coordinate transformation based on the finite-volume method and body-fitted non-orthogenal grids using staggered control volume and covariant variable as dependent one. Computations are started at intake valve opening and are carried through top-dead-center of compression. A k-$\varepsilon$model is used to represent turbulent transport of momentum. The principal study is the evolution of interaction between mean flow and turbulence and of the role of swirl and tumble in generating near TDC turbulence. Results for three different inlet flow configuration are presented. From these results, complex flow pattern may be effective for promoting combustion in spark-ignition engines and kinetic energy of mean flow near TDC is well converted into turbulent kinetic energy.

  • PDF

Mat Foundation Analysis Using Variable Node Plate Bending Element (변절점 굉판휨요소를 이용한 전면기초의 해석)

  • 최창근;김한수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.7-12
    • /
    • 1992
  • The variable node plate bending element, ie, the element with one or two additional mid-side nodes is used in the analysis of mat foundation to generate the nearly ideal grid model in which more nodes are defined near the column location. The plate bending element used in this study is the one based on Mindlin/Reissner plate theory with substitute shear strain field and the nodal stresses of that element are obtained by the local smoothing technique. The interaction of the soil material with the mat foundation is modeled with Winkler springs connected to the nodal points in the mat model. The vertical stiffness of the soil material are represented in terms of a modulus of subgrade reaction and are computed in the same way as to the computation of consistent nodal force of uniform surface loading. Several mesh schemes were proposed and tested to find the most suitable scheme for mat foundation analysis.

  • PDF

New Wall Impaction Model for Diesel Spray (디젤분무의 새로운 벽면충돌모델)

  • Park K.
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.80-88
    • /
    • 1997
  • A new wall impaction model for diesel spray is described in this paper. The gas phase is modelled in terms of the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled following the discrete droplet model approach. The droplet parcel contains many thousands of drops assumed to have the same size, temperature and velocity components. The droplet parcel equations of trajectory, momentum, mass and energy are written in Lagrangian form. The new drop-wall interaction model is proposed, which is based on experimental investigations on individual drops, and it is applied for the general non-orthogonal grid. The model is then assessed through comparison with experiments over a wide range of test conditions of sprays. The results are in good agreement with experimental data.

  • PDF

Direct Simulations of Aerodynamic Sounds by the Finite Difference and Finite Volume Lattice Boltzmann Methods

  • Tsutahara, Michihisa;Tamura, Akinori;Motizuki, Kazumasa;Kondo, Takamasa
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.22-25
    • /
    • 2006
  • Direct simulations of aerodynamic sound, especially sound emitted by rapidly rotating elliptic cylinder by the finite difference lattice Boltzmann method (FDLBM). Effect of pile-fabrics for noise reduction is also studied by the finite volume LBM (FVLBM) using an unstructured grid. Second order time integration and third order upwind scheme are shown to be enough for these simulations. Sound sources are detected to be doublets for both cases. For the elliptic cylinder, the doublet is generated in the interaction between the vortex and the edge. For the circular cylinders, they are generated synchronizing with the Karman vortex street, and it is also shown that the pile-fabrics covering the surface of the cylinder reduces the strength of the source.

  • PDF

Supersonic and Hypersonic Flutter Characteristics for Various Typical Section Shapes of Missile Fin (유도무기 날개 단면형상에 따른 초음속 및 극초음속 플러터 특성)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Kim, Yo-Han;Oh, Il-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.496-502
    • /
    • 2008
  • In this study, supersonic and hypersonic flutter characteristics have been analyzed for the various typical section shapes of missile fin configurations. Nonlinear flutter analyses are conducted considering the effect of moving shock waves. Computational fluid dynamic method is applied to accurately predict unsteady aerodynamic loads due to structural motions for the solution of aeroelastic governing equations. Commonly used typical section shapes of supersonic and hypersonic launch vehicles are considered in the present numerical study. Detailed flutter responses for four different typical section models are presented and the flutter characteristics are physically investigated.

Flamelet and Conditional Moment Closure Modeling for the Turbulent Recirculating Nonpremixed Flames (화염편 및 조건평균법 모델을 이용한 재순환 비예혼합 난류 화염장의 해석)

  • Kim, Gun-Hong;Kang, Sung-Mo;Kim, Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1616-1624
    • /
    • 2004
  • The conditional moment closure(CMC) model has been implemented in context with the unstructured-grid finite-volume method which efficiently handle the physically and geometrically complex turbulent reacting flows. The validation cases include a turbulent nonpremixed CO/$H_2$/$N_2$ Jet flame and a turbulent nonpremixed $H_2$/CO flame stabilized on an axisymmetric bluff-body burner. In terms of mean flame field, minor species and NO formation, numerical results has the overall agreement with expermental data. The detailed discussion has been made for the turbulence-chemistry interaction and NOx formation characteristics as well as the comparative performance for CMC and flamelet model.

Analysis of Turbomachinery Internal Flow Using Parallel Computing (병렬컴퓨팅을 이용한 터보기계 내부 유동장 해석)

  • Yee, Jang-Jun;Kim, Yu-Shin;Lee, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.586-592
    • /
    • 2000
  • 터보머신 태부에 존재하는 정익 - 동익의 상호작용 유동현상을 수치모사 하는 코드를 병렬화 하였다 정익 - 동익의 상호작용을 해석하는 데에 편리하도륵 Multi-Block Grid System을 도입하여 계산영역을 형성하였고, 동익의 움직임으로 인해 발생하는 Sliding Interface부분은 Patched 알고리즘을 적용하여 해석하였다. 정익과 동익의 수를 1대 1로 단순화시켜 수치모사한 결과와 정익과 동익의 수를 실제 조건과 더 비슷하게 설정한 3대 4의 비율로 맞추어 수치모사한 결과를 비교하였다. 또한, 병렬컴퓨팅으로 인해 단축된 계산시간을 다른 연구에서의 계산시간들과 서로 비교하였다. 2차원 비정상 압축성 Navier-Stokes 방정식이 이용되었고, 난류모델링에는 K-w SST 모델링이 적응되었다. Roe의 FDS 기법을 사용하여 플럭스를 계산하였고, MUSCL 기법을 적용하여 3차의 공간정확도를 갖도록 하였다. 시간적분에는 이보성의 DP-SGS를 사용하였다. 해석결과의 분석에는 Time-averaged pressure distribution과 Pressure amplitude distribution 데이터를 사용했다.

  • PDF