• 제목/요약/키워드: Grid Connected Converter

검색결과 209건 처리시간 0.024초

Mitigation of Voltage Sag and Swell Using Direct Converters with Minimum Switch Count

  • Abuthahir, Abdul Rahman Syed;Periasamy, Somasundaram;Arumugam, Janakiraman Panapakkam
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1314-1321
    • /
    • 2014
  • A new simplified topology for a dynamic voltage restorer (DVR) based on direct converter with a reduced number of switches is presented. The direct converter is fabricated using only three bi-directional controlled switches. The direct converter is connected between the grid and center-tapped series transformer. The center-tapped series transformer is used to inject the compensating voltage synthesized by the direct converter. The DVR can properly compensate for long-duration, balanced, and unbalanced voltage sag and swell by taking power from the grid. The switches are driven by ordinary pulse width modulation signals. Simulation and hardware results validate the idea that the proposed topology can mitigate sag of 50% and swell of unlimited quantity.

회전자측 PWM 인버터-컨버터를 사용한 이중여자 유도형 풍력 발전기의 계통 투입 알고리즘 (Grid Connection Algorithm for Doubly-Fed Induction Generator Using Rotor Side PWM Inverter-Converter)

  • 정병창;권태화;송승호;김일환
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권10호
    • /
    • pp.528-534
    • /
    • 2003
  • A grid connection algorithm is proposed for the doubly-fed induction generator (DFIG) which is widely adopted in high power variable speed wind turbine. Before the stator of DFIG is connected to grid, rotor-side converter is used to control the induced stator voltage. As a result, the stator transient current is limited below the rate value during the connection by the proposed synchronization of the stator voltage to the grid voltage. A wind power generation simulator using DC motor and wound-rotor induction generator is built and the dynamic characteristics of proposed algorithm is verified experimentally.

계통 연계형 태양광 인버터에서 최대 출력 점 추적 제어 (Maximum Power Point Tracking Control for a Grid-Tie Photovoltaic Inverter)

  • 이우철
    • 조명전기설비학회논문지
    • /
    • 제23권5호
    • /
    • pp.72-79
    • /
    • 2009
  • 태양 에너지는 재생 가능하고 오염이 없는 특성으로 바람직한 에너지 원이다. 계통에 이용하기 위해서는 dc-dc 컨버터와 계통 연계 do-ac 인버터가 필요하다. dc-dc 컨버터는 태양광 시스템이 높은 dc전압에 동작하기 위하여 필요하고, 인버터는 계통에 연결하기 위하여 필요한 전압과 주파수를 만들어 내는데 필요하다. 본 논문에서는 첫째로 단상 계통 연계 인버터에서 전류 루프 전달 함수가 유도되고, 둘째로 컨버터 측에서 컨덕턴스 증가 방식의 MPPT 방식이 제안하여 인버터 측에 최대 전력을 공급하는데 있다. 시뮬레이션 결과가 계통에서 태양광 인버터 시스템의 성능과 특성을 보여준다.

계통연계형 인버터 병렬운전 시 LCL 필터 상호간섭 특성 연구 (A Study for Mutual Interference of LCL Filter Under Parallel Operation of Grid-Connected Inverters)

  • 이강;서정진;차한주
    • 전력전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.75-81
    • /
    • 2021
  • This study analyzes the resonance characteristics caused by the mutual interference between LCL filters and the grid impedance under the parallel operation of the grid-connected inverter using the LCL filter. These characteristics are verified through simulation and experiment. Two inverters are used to connect to the grid in parallel, and the system parameters, including the LCL filter, are set to the same conditions. In the case of inverters running in parallel at the point of common coupling, the presence of grid impedance causes mutual interference between the LCL filters of each inverter, and the deviation of the filter resonance frequency is analyzed to understand the parallel inverter. The correlation between the number of devices and the size of grid impedance is simulated by PSIM and verified by MATLAB. By connecting the real-time digital simulator Typhoon HILS to the DSP 28377 control board, the mutual interference characteristics are tested under the condition of two inverters running in parallel. The experimental and analysis results are the same, indicating the validity of the analysis.

Improved DC Offset Error Compensation Algorithm in Phase Locked Loop System

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1707-1713
    • /
    • 2016
  • This paper proposes a dc error compensation algorithm using dq-synchronous coordinate transform digital phase-locked-loop in single-phase grid-connected converters. The dc errors are caused by analog to digital conversion and grid voltage during measurement. If the dc offset error is included in the phase-locked-loop system, it can cause distortion in the grid angle estimation with phase-locked-loop. Accordingly, recent study has dealt with the integral technique using the synchronous reference frame phase-locked-loop method. However, dynamic response is slow because it requires to monitor one period of grid voltage. In this paper, the dc offset error compensation algorithm of the improved response characteristic is proposed by using the synchronous reference frame phase-locked-loop. The simulation and the experimental results are presented to demonstrate the effectiveness of the proposed dc offset error compensation algorithm.

태양광 시스템의 전 범위 전력점 추종을 위한 CPG 알고리즘에 관한 연구 (A Study on Constant Power Generation Algorithms for a Whole Range Power Point Tracking in Photovoltaic Systems)

  • 양형규;방태호;배선호;박정욱
    • 전력전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.111-119
    • /
    • 2019
  • In this study, constant power generation (CPG) algorithms are introduced for whole range power point tracking in photovoltaic systems. Currently, maximum power point tracking (MPPT) algorithm is widely used for high-power photovoltaic systems. However, MPPT algorithm cannot flexibly control such systems according to changing grid conditions. Maintaining grid stability has become important as the capacity of grid-connected photovoltaic systems is increased. CPG algorithms are required to generate the desired power depending on grid conditions. A grid-connected photovoltaic system is configured, and CPG algorithms are implemented. The performances of the implemented algorithms are compared and analyzed by experimental results.

Controller Design and By-Pass Structure for the Two-Stage Grid-Connected Photovoltaic Power Conditioning System

  • 이성준;배현수;조보형
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2009년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.206-208
    • /
    • 2009
  • In this paper, a systematical controller design method for a twostage grid-connected photovoltaic power conditioning system is proposed. For a pre-stage boost converter to achieve the stable operation in the entire region of solar array, the digital resistive current mode controller is used. This algorithm is very simple to implement with a digital controller and there is no power stage parameter dependency in the controller design. For a post-stage single-phase full-bridge inverter, a PI controller with a feedforward compensation for the inner current control is employed. Furthermore, in case that the operating point of the solar array under varying environmental conditions is higher than the required voltage for the inverter current control, the bypass mode for the boost converter is possible for the more efficient operation. The proposed control scheme is validated through the experiment of the prototype two-stage power conditioning system hardware with a 200W solar array.

  • PDF

Hardware Simulator Development for a 3-Parallel Grid-Connected PMSG Wind Power System

  • Park, Ki-Woo;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.555-562
    • /
    • 2010
  • This paper presents the development of a hardware simulator for a 3-parallel grid-connected PMSG wind power system. With the development of permanent magnetic materials in recent years, the capacity of a PMSG based wind turbine system, which requires a full-scale power converter, has been raised up to a few MW. Since it is limited by the available semiconductor technology, such large amounts of power cannot be delivered with only one power converter. Hence, a parallel connecting technique for converters is required to reduce the ratings of the converters. In this paper, a hardware simulator with 3-parallel converters is described and its control issues are presented as well. Some experimental results are given to illustrate the performance of the simulator system.

태양광 발전시스템의 네가티브 컨덕턴스를 이용한 계통연계형 인버터 (Grid-Connected Inverter Using the Negative Conductance of Photovoltaic Power System)

  • 이창희;박기락;최재호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.45-48
    • /
    • 2002
  • This paper proposes a grid-connected inverter using the negative conductance of PV power system, which has four IGBTs and simple controller. Most of modern electric loads generate the current harmonics and the line voltage distortion. The new solar-to-ac converter(STAC) provides by emulating a negative conductance load to the line voltage, so the current harmonics from STAC is canceled the effect of the harmonics from other loads. As a result, the line voltage distortion is decreased. The proposed system have low cost, small size, and light weight compared to conventional photovoltaic converter

  • PDF

계통연계 풍력 및 태양광발전시스템 고조파 영향 검토 (Harmonic Impact Studies of Grid-Connected Wind Power and PV Generation Systems)

  • 이상민;정형모;유권종;이강완
    • 전기학회논문지
    • /
    • 제58권11호
    • /
    • pp.2185-2191
    • /
    • 2009
  • Wind power and photovoltaic(PV) generation systems are the fastest growing sources of renewable energy. The nonlinear devices, such as power electronic converter or inverter, of wind power and PV generation systems are the source of harmonics in power systems. The harmonic-related problems can have significant detrimental effects in the power system, such as capacitor heating, data communication interference, rotating equipment heating, transformer heating, relay misoperation and switchgear failure. There is a greater need for harmonic analysis that can properly maintain the power quality. By measuring harmonics of existing wind power and PV generation systems as harmonics modeling, the studies were made to see the harmonic impact of grid-connected wind power and PV generation systems.