• Title/Summary/Keyword: Greenhouse structures

Search Result 92, Processing Time 0.032 seconds

Development of an Aerodynamic Simulation for Studying Microclimate of Plant Canopy in Greenhouse - (1) Study on Aerodynamic Resistance of Tomato Canopy through Wind Tunnel Experiment - (공기유동해석을 통한 온실내 식물군 미기상 분석기술 개발 - (1) 풍동실험을 통한 토마토 식물군의 공기저항 연구 -)

  • Lee In-Bok;Yun Nam-Kyu;Boulard Thierry;Roy Jean Claude;Lee Sung-Hyoun;Kim Gyoeng-Won;Lee Seung-Kee;Kwon Soon-Hong
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.289-295
    • /
    • 2006
  • A computational fluid dynamics (CFD) numerical model has been developed to effectively study the ventilation efficiency of multi-span greenhouses with internal crops. As the first step of the study, the internal plants of the CFD model had to be designed as a porous media because of the complexity of its physical shapes. In this paper, the results of the wind tunnel tests were introduced to find the aerodynamic resistance of the plant canopy. The Seogun tomato was used for this study which made significant effects on thermal and mass exchanges with the adjacent air as well as internal airflow resistance. With the main factors of wind speed, static pressure, and density of plant canopy, the aerodynamic resistance factor was statically found. It was finally found to be 0.26 which will be used later as an input data of the CFD model. Moreover, the experimental procedure of how to find the aerodynamic resistance of various plants using, wind tunnel was established through this study.

The Effect of Wind Force on Stability of Agricultural Structures - Numerical Calculation of Wind Pressure Coefficients - (풍하중이 농업시설물의 구조적 안정성에 미치는 영향 -수치해석에 의한 풍력계수분포 산정-)

  • 최홍림;손정익
    • Journal of Bio-Environment Control
    • /
    • v.3 no.1
    • /
    • pp.10-19
    • /
    • 1994
  • Wind load is known to be one of major forces to influence the stability of agricultural structures. General flow fields were calculated to determine flow characteristics over the envelop of the following three types of greenhouses with arched roof : single span, twin span greenhouses, and two single span greenhouses apart 3m inbetween. Pressure coefficients along the envelop of greenhouse were numerically calculated by the k-$\varepsilon$ turbulence model, which lead to determine wind forces on it. Curvilinear coordinate for an arched roof and the upwind scheme were adopted for the study. The calculated pressure coefficients were validated with the avaliable data of Japanese Standard and NGAM Standard. The Magnitude of calculated forces over the envelop was not in good accordance with data except the windward wall. Even tile data of Japanese and NGAM Standard for validation deviated a lot from each other in quantity and quality. Such discrepancy may be attributed to different geometric and/or flow configuration conditions for experiments, or the insenstivity of the k-$\varepsilon$ turbulence model to recirculation flow.

  • PDF

Analysis of the Characteristics of Peak External Pressure Coefficient Working on Roof Surface according to the Shape and Layout of Green Houses (비닐하우스의 형태와 배치에 따른 지붕면 피크외압계수 특성분석)

  • You, Ki-Pyo;Paek, Sun-Young;Kim, Young-Moom
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.59-66
    • /
    • 2010
  • Among the protected horticulture facilities in Korea, 99.2% are pipe-framed green houses and most of them are structurally vulnerable single-span type green houses. This study examined peak external pressure coefficient for the roof surface of a green house group composed of single-span and a multiple-span green houses. According to the results of the experiment, the distribution of peak external pressure coefficient was around 30% higher in the single-span greenhouse than in the multi-span ones. The external pressure coefficient for the roof surface of the vinyl house group was, in all of the three vinyl houses, was around 20%-30% higher than that for single-span greenhouses.

  • PDF

Mechanical properties of demountable shear connectors under different confined conditions for reusable hybrid decks

  • Kavour, Florentia;Christoforidou, Angeliki;Pavlovic, Marko;Veljkovic, Milan
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.419-429
    • /
    • 2022
  • In response to the sustainability requirements set in the EU Commission's "Green Deal" towards reduction of the greenhouse gas emissions, it is estimated that the structural design for deconstruction is going to contribute considerably to the sustainable development of the built environment. The demountability of multi-material structural systems basically depends on the shear connectors used in the structural system. This paper focuses on a type of demountable injected shear connector with an injected steel-reinforced resin (iSRR) which consists of spherical steel particles embedded in a resin. Its application to steel-to-concrete and steel-to-Fiber Reinforced Polymer (FRP) decks is presented along with its benefits. In parallel, an overview of the experimental and numerical research on the evaluation of the mechanical properties of the demountable bolted connectors with iSRR is discussed. Last, detailed finite element (FE) models and a parametric study are performed to quantify the confinement level of the SRR material influenced by the oversized hole diameter.

A Basic Study of Automatic Rebar Length Estimate Algorithm of Bearing Wall by Using BIM-Based Shape Codes Built in Revit (BIM 기반 형상코드를 이용한 내력벽 철근길이 자동 산정 기초 연구)

  • Lim, Jeeyoung;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.79-80
    • /
    • 2023
  • Reinforced concrete structures require large amounts of concrete and rebar in the construction stage. Rebar is a major resource for reinforced concrete structures, and generates more CO2 per unit weight than other materials. To solve this problem, it was confirmed that the cutting waste can be close to zero when the special length of the rebar is calculated in the drawing created after structural design. However, a system for automatically calculating the length of reinforcing bars to efficiently calculate the total amount of reinforcing bars has not been established. Therefore, the objective of this study is a basic study of automatic rebar length estimate algorithm of bearing wall by using BIM-based shape codes built in Revit. The bearing wall rebar can be automatically derived using the developed model. Furthermore, through applying the developed model to the construction field, it will greatly contribute to reducing greenhouse gas emissions by reducing rebar cutting waste.

  • PDF

Creating and Using BIM waste energy map Study on Energy Management

  • Kim, Hye-Mi;Hong, Won-Hwa
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.09a
    • /
    • pp.291-291
    • /
    • 2010
  • Emerging global economic growth and increasing demand for energy supply and demand imbalance and the excessive use of fossil fuels existing the rapidly increasing greenhouse gas emissions and resource depletion of global energy crisis is deepening. Accordingly, improvement of living conditions around and through the natural ecological preservation and the need for a comfortable life for the meeting the importance of energy management and consumption are emerging. Many in the field of architecture for energy-saving measures and conducts research and analysis from the early stages to verify the energy performance of BIM (Building Information Model) technology development and commercialization through the building's energy performance to an objective technology forecasts Analysis of the existing building energy performance in waste management also possible that "BIM-based green building process, the possibility of" suggested. In this study, BIM through the analysis of information using the structures for the management of waste, energy and physical data collected by Mapping it can effectively plan resources for recycling were analyzed.

  • PDF

Gas Hydrate (가스 하이드레이트)

  • Ryu Byong-Jae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.609-614
    • /
    • 2005
  • Gas hydrates are ice-l ike sol id compounds that are composed of water and natural gas. All common gas hydrates belong to the three crystal structures that are composed of five polyhedral cavities formed by hydrogen bonded water molecules and stable in specific high pressure and low temperature conditions. Gas hydrates contain large amounts of organic carbon and widely occur in deep oceans and permafrost regions, and they may therefore represent a potential energy resource in the future. United States and Japan perform the national R&D programs for the commercial production of gas hydrates in 2010's. The study on gas hydrates are also important for exploration and development of natural gas in the regions where gas hydrates are accumulated and could be formed. Although their global abundance is debated, they play an important role in global climate change since methane is a 50 times more effect ive greenhouse gas than carbon dioxide. Natural gas hydrates also form a possible natural hazard if rapidly dissociated and can cause slides and slumps and in the marine environment associated tsunamis.

  • PDF

Investigation of Actural State of Plastic Greenhouse Structures in Korea (플라스틱 하우스의 구조 실태의 조사 연구)

  • 김문기;고재군;이신호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.3
    • /
    • pp.113-124
    • /
    • 1987
  • The objective of this study was to disclose the problem of structural safety and the state of utilization of standard types of plastic film house through investigation of actural state of plastic greenhouses for the southern part of the Korean peninsula. And also, the application method of standard types were proposed. The results obtained are summarized as follows 1. Plastic film houses investigated were not designed by the structural design conditions of loads and materials. 2.The construction method of greenhouses was not standardized. 3.Single type of standard greenhouses was nearly used and double types were applied to the standard type. 4.The standard frames of plastic film house were appeared to have structural lack of stability at the design snow and wind loads for most regions. 5.Safety snow depths and safety wind velocities were proposed for the frame intervals and pipe diameters of standard greenhouses.

  • PDF

Survey and Analysis of Power Energy Usage of University Buildings (대학건축물의 전력에너지 사용량 조사 및 분석)

  • Youn, Nam Sik;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.27-32
    • /
    • 2013
  • For the past seven years, the increase in the energy consumption of universities in Korea has been 3.7 times higher than the overall increase in the energy consumption across Korea (22.5%). This is an example that shows that universities have been a massive source of greenhouse gases. Such an increase has been attributed to the new and expanded construction of architectural structures on campus. Many people argue that the increasing number of buildings may cause waste of energy and loss of efficiency. Therefore, this study was conducted as a preliminary study to derive energy efficiency measures for new university buildings. The two aspects of energy-saving as required by the eco-friendly structure certification standards have been applied to analyze the use of new/renewable energy and the energy consumption of new university buildings that have applied light density and light engineering methods. Based on these results, the major sources of energy of existing buildings and new university buildings were compared to comparatively discuss how effectively they improve energy performance.

Regional Supply Strategies for Renewable Energy Sources based on Contribution Level of GHG Emission Reduction (신재생에너지의 온실가스감축 기여도에 따른 지역별 보급전략)

  • Kim, Hyun Seok
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.4
    • /
    • pp.215-223
    • /
    • 2014
  • This study examines the contribution level of greenhouse gas(GHG) emission reduction and installation costs of renewable energy facilities. The GHG emission forecasts and industrial structures in the 16 regions of Korea are then analyzed to identify the proper supply of renewable energy sources for each region. The results show that water power is the most effective and efficient renewable energy source to reduce GHG emissions, followed by sunlight, wind power, geothermal heat, and solar heat, respectively. The 16 regions are then categorized into 4 groups based on their GHG emission forecast and industrial structure: high emission and manufacturing group, low emission and manufacturing group, low emission and service group, and high emission and service group. The proper supply of renewable energy sources for each group is then determined based on the contribution level and cost efficiency of GHG emission reduction.