• Title/Summary/Keyword: Greenhouse heating system

Search Result 202, Processing Time 0.021 seconds

Estimation of Heat Exchange Rate of Standing Column Well for Sustainable Groundwater Curtain for Greenhouse Heating (순환식 지하수 수막시스템 그린하우스 난방을 위한 스탠딩컬럼웰 열교환율 산정)

  • Byoung Ohan Shim;Seung Gyun Baek;Seonghoon Jeong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.20 no.2
    • /
    • pp.11-23
    • /
    • 2024
  • In order to design a standing column well (SCW) for a sustainable groundwater curtain system for greenhouse heating, we conducted parameter sensitivity tests. These tests simulated the outlet temperature changes of the SCW in a groundwater recirculating greenhouse cultivation system. Our modeling considered ground thermal conductivity and hydrogeological conditions. Specifically, we examined several factors, including SCW length, enhanced thermal conductivity of the ground, and groundwater circulation rate. The simulation results indicated that there was not a significant difference in the heat exchange rate based on the characteristics of enhanced thermal conductivity. However, we anticipate a substantial difference in the case of varying SCW lengths. Therefore, we conclude that the simulation results are primarily influenced by conductive heat exchange values, as the circulating water remains at a constant groundwater level.

Economic Assessment of Biomass Heating for Rural Application (바이오매스를 이용한 농업용 난방계획의 경제성 검토)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.2
    • /
    • pp.45-52
    • /
    • 2005
  • Biomass is one of the most competitive renewable energy resource and can be used for heating for rural applications. A economic assessment was made of biomass heating, using the tool BIOH2000 from $RETScreen^{\circledR}$ International Clean Energy Decision Support Centre. For a 260kW heating system for 50 farm houses, the assessment showed a very promising results. Internal rate of return was $19.7\%$ and year-to-positive cash flow was 5.1 years. Relative price of biomass over fossil fuel significantly affected the economic feasibility of the project. Heating demand was directly related to annual demand of biomass and economic feasibility. Relative cost of distribution pipe over the total initial costs also affected the economic feasibility of the project. The economic feasibility was expected to be improved by the probable greenhouse emission reduction credit and reduction of initial costs through utilizing existing heating system for peak or back up heating system.

Thermal Energy Characteristics and Simulation Model Development for Greenhouse Heating System with Heat Pump and Latent Heat Storage (열펌프와 잠열축열을 이용한 온실 난방시스템의 열특성과 시뮬레이션 모델개발)

  • 노정근;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.26 no.6
    • /
    • pp.553-562
    • /
    • 2001
  • The greenhouse heating system with heat pump and latent heat storage was built for development of simulation model and validation. The computer simulation model for the system to predict temperature of air, soil surface and cover film in the greenhouse were developed and its validity was justified by actual data. From the analysis of experimentally measured and the simulation output, following results were obtained. 1. The expected values of inside air temperature for the greenhouse with a heat pump and a latent heat storage system were very much close to the experimental values at the error range of 1.0$\^{C}$. 2. The expected values of soil surface temperature fur the geenhouse with a heat pump and a latent heat storage system were very much close to the experimental values at the error range of 1.0$\^{C}$. 3. The expected values of thermal energy flow fur the greenhouse with a heat pump and a latent heat storage system were very much close to the experimental values at the error range of 167.2kJ/m$^2$h. 4. Heat lass value of day time was found to be larger than that of night time as much as 1.11 time. 5. At day time. the inside air temperature was shown to be higher than the set point of 7.0$\^{C}$. At night time, the inside air temperature was controlled in order to maintain higher temperatures than the set point.

  • PDF

Analysis on the Uniformity of Temperature and Humidity According to Environment Control in Tomato Greenhouses (토마토 재배 온실의 환경조절에 따른 온습도 균일도 분석)

  • Nam, Sang-Woon;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.215-224
    • /
    • 2009
  • A survey on the actual state of heating, cooling, ventilation, and air-flow and experimental measurement of temperature and humidity distribution in tomato greenhouse were performed to provide fundamental data required in the development of air-flow control technology. In single-span plastic houses, which account for most of 136 tomato greenhouses surveyed, roof windows, ventilation and air-flow fans were installed in a low rate, and installation specs of those facilities showed a very large deviation. There were no farms installed greenhouse cooling facilities. In the hot air heating system, which account for most of heating type, installation specs of hot air duct showed also a large deviation. The exhaust air temperature and wind speed in hot air duct also were measured to have a big difference depending on the distance from the heater. We are using the maximum difference as indicator to determine whether temperature distribution is uniform. However if the temperature slope is not identical in greenhouse, it can't represent the uniformity. We analyzed relation between the maximum difference and the uniformity of temperature and humidity distribution. The uniformity was calculated using the mean and standard deviation of data from 12 measuring points. They showed high correlation but were represented differently by linear in the daytime and quadratic in the nighttime. It could see that the uniformity of temperature and humidity distribution was much different according to greenhouse type and heating method. The installation guidelines for ventilation and air-flow fan, the spread of greenhouse cooling technology for year-round stable production, and improvement of air duct and heating system, etc. are needed.

An Evaluation of Heating Performance of the Heat Pump System Using Wasted Heat from Thermal Effluent for Greenhouse Facilities in Jeju (발전소 온배수 폐열을 이용한 제주 시설온실 냉난방용 열펌프 시스템의 난방성능 평가)

  • Moon, Sungbu;Hyun, Myung-Taek;Heo, Jaehyeok;Lee, Dong-Won;Lee, Yeon-Gun
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.22-29
    • /
    • 2019
  • A heat pump system using wasted heat from thermal effluent to supply the heating energy can reduce energy consumption and emissions of greenhouse gases by greenhouse facilities nearby. The Jeju National University consortium constructed a heat pump system using the thermal effluent from the Jeju thermal power plant of KOMIPO to provide with cool or hot water to greenhouse facilities located 3 km from the power station. In this paper, the system configuration of the heat pump system was summarized, and the results of operations for demonstration of a heating performance carried out during the winter season in 2018 were investigated. The preoperational tests proved that the water temperature drop through the pipeline transporting extracted heat was less than $2^{\circ}C$. The COP (coefficient of performance) of the heat pump was higher than 4.0, and hot water with the maximum temperature of $50^{\circ}C$ could be supplied to greenhouse facilities by utilizing wasted heat from thermal effluent.

Development of Thermal Storage System in Plastic Greenhouse(II) -Thermal performance of solar greenhouse system for hydroponic culture- (플라스틱 온실(溫室)의 열저장(熱貯藏) 시스템의 개발(開發)에 관(關)한 연구(硏究)(II) -수경재배용(水耕栽培用) 태양열(太陽熱) 온실(溫室) 시스템의 열적(熱的) 성능(性能)-)

  • Kim, Y.H.;Koh, H.K.;Kim, M.K.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.123-133
    • /
    • 1990
  • Thermal performance of a solar heating plastic greenhouse designed for a hydroponic system was studied. The system was constructed with the air-water heat exchanger and thermal storage tank that were combined with hydroponic water beds. Experiments were carried out to investigate the daily average heat stored and released in thermal storage tank, average solar energy collection efficiency, average coefficient of performance, average oil reduction factor of thermal storage system, and the heat transfer coefficient during the nighttime in plastic greenhouse. The results obtained in the present study are summarized as follows. 1. Daily average heat stored in thermal storage tank and released from the thermal storage tank was 1,259 and $797KJ/m^2$ day, respectively. 2. The average solar energy collection efficiency of thermal storage tank was 0.125 during the experiment period. And the average coefficient of performance of thermal storage system in plastic greenhouse was 3.6. 3. The average oil reduction factor of thermal storage system and the heat transfer coefficient during the nighttime in plastic greenhouse were found to be 0.52 and $4.3W/m^2\;hr\;^{\circ}C$, respectively.

  • PDF

Analysis of Heating Characteristics Using Aluminum Multi-Layer Curtain for Protected Horticulture Greenhouses

  • Park, Bum-Soon;Kang, Tae-Hwan;Han, Chung-Su
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.193-200
    • /
    • 2015
  • Purpose: The purpose of this study was to investigate the energy saving effects and characteristics of plant growth in a greenhouse with an aluminum multi-layer curtain compared to a greenhouse with non-woven fabric. Method: The dimensions of both greenhouses $43m{\times}3.6m{\times}8m(L{\times}H{\times}W)$, and both used hot air heater systems for maintaining a constant temperature $15^{\circ}C$. Heating characteristics such as solar intensity, inside and ambient temperatures, and fuel consumption were measured and analyzed. Results: The changes of average temperature of both greenhouses during a 15-days (December 06 - 20) showed approximately $26^{\circ}C$ at around 2 pm when the ambient temperature was highest. The greenhouses were set by the heater to keep a temperature of $15^{\circ}C$ from 4 pm to 8 am the following day. The average heat loss (for 15 days) from the greenhouse with an aluminum multi-layer curtain was $161.2-268.4kJ/m^2{\cdot}h$ during the daytime and $152.3-198.1kJ/m^2{\cdot}h$ during the nighttime. The average heat loss (for 15 days) from the greenhouse with non-woven fabric was $155.7-258.9kJ/m^2{\cdot}h$ during the daytime and $144.9-207.0kJ/m^2{\cdot}h$ during the nighttime. The total heat loss (for one day) from the non-woven fabric system was $7,960kJ/m^2$($2,876kJ/m^2$ during the daytime, $5,084kJ/m^2$ during the nighttime). The heat supply over 36 days for the non-woven fabric system was higher than the aluminum multi-layer curtain system by $616.3-65,079.4kJ/m^2$. Conclusions: These results suggest that a greenhouse with an aluminum multi-layer curtain could save energy usage by 35% over a greenhouse with non-woven fabric.